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ACCESS CONTROL MODELS FOR CLOUD-ENABLED INTERNET OF THINGS

Asma Hassan Alshehri, Ph.D.
The University of Texas at San Antonio, 2018

Supervising Professor: Dr. Ravi Sandhu, Ph.D.

The concept and deployment of Internet of Things (IoT) has continued to develop momentum

over recent years. The rapid development of IoT in recent years has triggered a wave of poten-

tially unreasonable expectations. Many industries have started big projects with key technologies

that incorporate the basic architecture of IoT, which has not been determined yet. Several differ-

ent layered architectures for IoT have been proposed. In general, the proposed IoT architectures

comprise three main components: an object layer, one or more middle layers, and an application

layer. The main difference in detail between them is in the middle layers. Some architectures

include a cloud services layer for managing IoT things. Some suggest the use of virtual objects

as digital counterparts for physical IoT objects. Sometimes both cloud services and virtual objects

are included.

In this dissertation, we initially propose an IoT architecture that can be used to develop an

authoritative family of access control models for a cloud-enabled Internet of Things. Our proposed

access-control oriented (ACO) architecture for IoT comprises four layers: an object layer, a virtual

object layer, a cloud services layer, and an application layer. This 4-layer architecture serves as

a framework to build access control models for a cloud-enabled IoT. Within this architecture, we

present illustrative examples that highlight some IoT access control issues leading to a discussion

of needed access control research. We identify the need for communication control within each

layer and across adjacent layers (particularly in the lower layers), coupled with the need for data

access control (particularly in the cloud services and application layers)

The ACO architecture is proposed for the cloud-enabled IoT, with virtual objects (VOs) and

cloud services in the middle layers. A central aspect of ACO is to control communication among

VOs. To this end, we develop operational and administrative access control models, assuming

vi



topic-based publish-subscribe interaction among VOs. Operational models are developed using

(i) access control lists for topics and capabilities for virtual objects, and (ii) attribute-based access

control, and it is argued that role-based access control is not suitable for this purpose. Adminis-

trative models for these two operational models are developed using (i) access control lists, (ii)

role-based access control, and (iii) attribute-based access control. A use case of sensing speeding

cars illustrates the details of these access control models for VO communication, and their differ-

ences. An assessment of these models with respect to security and privacy preserving objectives

of IoT is also provided.

Finally, we study AWS IoT as a major commercial cloud-IoT platform and investigate its suit-

ability for implementing the afore-mentioned academic models of ACO and VO communication

control. While AWS IoT has a notion of digital shadows closely analogous to VOs, it lacks explicit

capability for VO communication and thereby for VO communication control. Thus, there is a sig-

nificant mismatch between AWS IoT and these academic models. Our principal contribution in

this regard is to reconcile this mismatch by showing how to use the mechanisms of AWS IoT to ef-

fectively implement VO communication models. To this end, we develop an access control model

for virtual objects (shadows) communication in AWS IoT called AWS-IoT-ACMVO. We develop

a proof-of-concept implementation of the speeding cars use case in AWS IoT under guidance of

this model, and provide selected performance measurements. We conclude with a discussion of

possible alternate implementations of this use case in AWS IoT.
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Chapter 1: INTRODUCTION

In recent few decades, the concept of Internet of Things (IoT) has appeared in our lives and has

lately attracted the attention of governments, companies, and academia. The IoT is an extension

of network technology, where the main core of communication is the Internet. The promising

Internet of Things paradigm integrates many widely dispersed, mobile, abundant, heterogeneous

objects, such as sensors and actuators that collect data from an environment. It also incorporates

various technologies, such as Internet, network, communication protocols, and cloud and mobile

computing.

The rapid growth of IoT last years has triggered a wave of potentially unrealistic expectations.

For instance, many businesses have initiated big projects with key technologies that integrate the

basic architecture of IoT, which has not been determined yet. Thus, there is a fundamental need to

improve and determine one or more standard architectures for the upcoming IoT.

Most IoT architectures in industry combine the IoT with major cloud services that already exist.

Also, various academic IoT architectures suggested integrating the cloud within IoT architecture

to benefit from the cloud capability such as offering virtually unlimited computational capabilities,

low-cost, and on-demand storage capacity. This integration is referred to cloud-based IoT, cloud-

assisted IoT, or cloud-enabled IoT, which we adopt in this dissertation.

The cloud-enabled IoT has obtained much popularity in industry and academia. Most of

academia researches focus on either certain applications and technologies of the IoT or on IoT

surveys. However, one of the main issues of introducing the IoT technology into the real word

is security and privacy. Because the IoT architecture encompasses pervasive connected heteroge-

neous objects, which interact with each other, with applications, and with other entities, security

is necessary for its wide adoption and continued success. In this dissertation, we focus on access

control models for the cloud-enabled IoT, mainly authorization for virtual objects to communicate

with each other.
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Figure 1.1: General IoT Architecture from Literature

1.1 Motivation

In last few years, the academic and industrial communities have witnessed the rapid growth of the

concept of IoT. The many widely connected entities through Internet such as objects and applica-

tions make issues within the IoT platform raise more complicated and different issues compared

with traditional distributed systems. Thus, there is a need to adjust current solutions or propose

new ones in order to handle IoT issues.

1.1.1 The IoT Architecture

The rapid and fast growth of IoT needs to be built upon specific classification and architecture.

However, many businesses have introduced their IoT projects upon their view of IoT. That led to

have various IoT projects with different classifications. In other words, one IoT issue that may not

happen with one business may appear with other businesses. Therefore, there is an essential need

to determine one or more standard architectures for the upcoming IoT.

There have been various proposals for IoT architecture, although none so far is regarded as the

definitive IoT architecture. To our knowledge, all the proposed IoT architectures that we have seen

are divided into three main layers: an object layer, one or more middle layers, and an application

layer as shown in Figure 1.1. The main difference in detail between them is in the middle layers.

Some architectures abstracted the middle layers to only one layer [76], while others have two or

2



more middle layers [1, 8, 58, 74].

Various research papers [1, 8, 58, 61, 74] suggested integrating the cloud with the IoT as a cen-

tral entity between object and application layer. The IoT can benefit from the powerful capabilities

and resources of the cloud to support and compensate its technological constraints. The IoT en-

compasses pervasive and heterogeneous objects that produce big non-structured or semi-structured

data. IoT objects have limited computational power and low storage capacity. Offering virtually

unlimited computational capabilities, low-cost, on-demand storage capacity, and ubiquitous re-

sources usable from everywhere. It has been suggested using the cloud as the most convenient and

cost-effective solution to deal with IoT technological constraints [13, 14, 57, 60].

The IoT concept is developed within various technologies and many dimensions to support

distributed smart objects to collaborate and provide real-world intelligence. This complex envi-

ronment is faced with list of major IoT issues that need to be handled regardless of building a

formal IoT architecture. Scalability, heterogeneity, constrained resource, mobility, identification,

and security and privacy are examples of major issues that the IoT ecosystem may face.

Incorporating virtual object layer as an essential part of IoT architecture has been discussed in

depth in [52] with respect to general IoT issues. Atzoori et al. [8] argue for such a layer to unite

access to the heterogeneous devices in the object layer. Evangelos et al. [24] explain the benefit

of exposing the capabilities and services of objects to the upper layers through such abstractions.

A comparable definition as [24] is given in [68] with the name of ‘virtual object layer’. A virtual

object is also described in [73] as comprised of both current and historical information about a

specific physical object. A virtual object is called a device shadow in Amazon Web Service (AWS)

IoT, which persists the final and desired future status of each device, even when the device is

offline. Thus, we can see that integrating the cloud layer and the virtual object layer with the IoT

architecture supports and compensates IoT technological constraints.

3



1.1.2 The IoT Security Issues

One of the main components of the IoT is physical objects that impact on human beings on the

levels of personal daily lives to sophisticated financial transactions that are vital to global business.

Different entities are connected to each other in the IoT such as objects, networks, cloud, or ap-

plications need to be secured. There are security issues within IoT that need to be handled. Data

authentication, for example, where object information must be authenticated is important issue to

address. Access control is also another issue where data and entities can only be accessed by other

authorized entities. Such issues should be addressed and handled.

In fact, there have been various work proposed access control solutions for IoT based on certain

scenarios and use cases [15, 30, 47]. However, most proposed scenarios are not following specific

and formal architecture to be built upon. Thus, addressing security issues, such as access control,

of the IoT is not simple to be determined without following a suitable and clear IoT architecture.

1.2 Problem Statement

A robust IoT architecture is necessary to be build IoT upon. Integrating the cloud as a central

layer within the IoT architecture has been suggested to offset IoT technological constraints. In

other words, the IoT can benefit from the powerful capabilities and resources of the cloud. Also,

incorporating virtual object layer within IoT architecture has been suggested to mitigate IoT major

issues, such as scalability, heterogeneity, constrained resource, security and privacy, and identi-

fication. Thus, integrating both of virtual object and cloud layer in the middle layer of the IoT

architecture helps in supporting and compensating IoT technological constraints.

The growth of collected data that flows through other components of IoT is exposed to ex-

ploitation. One way of controlling access to the collected data from physical objects is to control

the communication among IoT physical objects, which can communicate in a distributed manner.

Because of pervasive heterogeneous physical objects, studying virtual objects communication is

more practical where objects can communicate in a homogeneous manner. This kind of commu-

nication needs to be controlled, so the security of virtual objects and their collected data can be
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preserved. The access control models that have been proposed can be used and adjusted appropri-

ately to accommodate IoT needs.

1.3 Thesis Statement

An initial set of access control models in cloud-enabled Internet of Things can be developed within

a robust framework, which can support further maturation and elaboration of this initial set. Inte-

grating the virtual object and the cloud layer within the IoT architecture is valuable to offset IoT

issues. Virtual objects communication offers easier communication of the heterogeneous objects,

so developing and controling virtual objects communication is useful for IoT success. Virtual ob-

ject communication can be controlled by adjusting the traditional access control models, which are

studied and reconciled within the AWS IoT.

1.4 Summary of Contribution

The major contributions of our dissertation are summarized in Figure1.2 and described as follows:

• Propose IoT architecture that is built upon previous proposed IoT architectures and sugges-

tions of using cloud and virtual object concept within IoT. The proposed IoT architecture

is called access control oriented (ACO) architecture for the cloud-enabled IoT, which incor-

prates various IoT security and access control issues.

• Investigating the communication among virtual objects and introduce ways to control this

communication based on ACO architecture for the cloud-enabled IoT. Existing traditional

access control models are adapted and utilized to develop operational models and adminis-

trative models for the proposed operational models, referred to as ACO-IoT-ACMsVO. A

use case of sensing speeding cars illustrates the details of these access control models for

VO communication.

– Operational models are developed using (i) access control lists for topics and capabil-

ities for virtual objects, and (ii) attribute-based access control. It is argued that role-
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Figure 1.2: Outline of Contributions

based access control is not suitable for this purpose.

– Administrative models for the two operational models are developed using (i) access

control lists, (ii) role-based access control, and (iii) attribute-based access control.

• Investigating AWS IoT as a major commercial cloud-IoT platform and demonstrate its suit-

ability for implementing our operational models of VO communication. This lead to develop

an access control model for virtual objects (shadows) communication in AWS IoT called

AWS-IoT-ACMVO.

1.5 Scope and Assumptions

We take a first step toward our eventual goal of evolving an authoritative family of access control

models for a cloud-enabled Internet of Things. Our proposed access control oriented (ACO) ar-

chitecture for the cloud-enabled IoT comprises four layers: an object layer, a virtual object layer,
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a cloud services layer, and an application layer. Each of these layers encapsulate different enti-

ties, associated data, and access control requirements. The ACO architecture will be our reference

to build access control models for a cloud-enabled IoT. The assumption and scope of the initial

proposed access control models for the IoT is as follow.

• There are different kinds of communications within our ACO architecture for the cloud-

enabled IoT. In this dissertation, we propose access control models that focus on controlling

the communication among virtual objects in the virtual object layer. Other kinds of commu-

nications within ACO architecture can be investigated in future works.

• The physical objects within our ACO architecture for the cloud-enabled IoT can communi-

cate with each other or with the upper layer. In our access control models for virtual object

communication, we assumed that physical objects can only communicate with each other

through their virtual objects in the virtual object layer.

• The cloud layer within our ACO architecture can have one or multiple clouds. In our access

control models for virtual object communication, we assumed that there is only one central

cloud. Thus, one centralized cloud is assumed in the cloud layer of the ACO architecture,

and there is no consideration for multi-clouds collaboration.

1.6 Organization of the Dissertation

Chapter 2 reviews academic published IoT architectures, IoT issues, access control models, and

recent access control models for IoT. Chapter 3 introduces ACO architecture for the cloud-enabled

IoT that used as a foundation to study IoT security issues, develop operational access control

models, and administrative access control models. In Chapter 4, a access control models for virtual

object communication in cloud-enabled IoT is proposed and explained in details within a use case,

referred to as ACO-IoT-ACMsVO. Chapter 5 reconciles ACO-IoT-ACMsVO within AWS IoT,

which is one of the major commercial cloud-IoT platform, and develops an access control model
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for virtual objects (shadows) communication in AWS IoT called AWS-IoT-ACMVO. Chapter 6

concludes this dissertation.

8



Chapter 2: BACKGROUND AND RELATED WORK

In this chapter, we review various areas as follows. We review academic published IoT architec-

tures, which we used to propose our IoT architecture. Also, we review main issues of the IoT that

we tried to overcome within our proposed architecture. The main benefit of integrating the cloud

layer in the middle layer of the IoT architecture is also discussed. Also, we review general access

control models and access control models for IoT environment. Finally, we review the AWS IoT

platform and the access control model of AWS IoT.

2.1 IoT Proposed Architectures

Various IoT architectures have been proposed, and these are divided into different layers. The

general construction proposed in most IoT architectures includes three basic layers: an object

layer, one or more middle layers, and an application layer [1, 8, 58, 74, 76]. In all the papers that

we reviewed, an object layer and an application layer existed. Although the functionalities of

the object and application layers might vary in their detail, the general functionalities are similar.

On the other hand, the middle layers vary in terms of the number of sub-layers and the proposed

technologies. We will discuss each layer in the general IoT architecture as well as its entities and

functionalities.

2.1.1 The Object Layer

The main task of the object layer (e.g., perception layer [74,81], hardware layer [29]) is to identify

objects [74], collect data from the physical environment [1,58], and reconstruct a broad perception

of the data. This task is accomplished by using objects (devices) such as sensors that can query

location, humidity, temperature, motion, etc. [1].

All papers agree that the primitive entity of this layer is sensors. Some papers would describe

this layer as consisting of wireless sensor networks (e.g., cluster of sensors [72]), where sensors

are the main physical objects that collect data. Other proposals would add other entities to this
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layer, such as actuators [1, 29], RFID tags [58], devices (e.g., cameras and cellphones) [68], and

networks of devices [81].

The IoT relies on a pervasive and heterogeneous set of objects that produce big non-structured

or semi-structured data [13]. These objects generally have limited computational power and low

storage capacity. Since IoT technology is a rich producer of big data [21], which is collected by

constrained objects, the collected data needs to be transferred to a more capable layer through

secure channels to solve a specific problem. Moreover, with a large set of heterogeneous ob-

jects which have different operating conditions, functionalities, resolutions, etc. [68], providing

seamless integration of these devices is a huge challenge, and this issue may hinder object interop-

erability and slow down the improvement of a unified reference model for IoT [52].

2.1.2 The Middle Layers

The main goal of middle layers is to successfully convey the collected data from object layer to a re-

mote destination [76,81]. Many proposed IoT architectures describe the middle layers as only one

layer. A transmission layer (gateway) proposed in [81] is responsible for gathering/sending data,

packaging data, exchanging data, parsing/dispatching commands, and logging events between the

application and object layer. All data is saved in the application layer in a database. A network

layer is proposed in [22, 39, 76] as a middle layer; it is responsible for intelligently processing the

massive amount of collected data.

While the transmission layer in [81] and the network layer in [76] are the only layer in the

middle layer of IoT architecture, other IoT architectures have proposed two or three layers between

the application and the object layers. The proposed architecture in [20] consists of two layers in

middle, the network layer and the service layer. The network layer connects everything together

to share information, and it aggregates information from existing IT infrastructures such as power

grids and healthcare systems. The service layer includes service discovery, service composition,

trustworthiness management, and service APIs. The IoT architecture in [41] also introduced the

network and middleware layer in the middle. The network layer transmits information to the
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middleware layer, which has service management, link to the database, information processing,

automatic decision, and a ubiquitous computation unit that can be placed in the cloud.

Separating tasks between a network and a service/middleware layer [20, 41] is more reliable

than loading the network layer [22, 39, 76] with so many tasks. The service/middleware layer

includes important tasks such as processing received data, managing services, making decisions,

and computing tasks. Many papers suggested integrating with the cloud to support tasks in this

layer [13, 14, 41, 57, 60].

The main functionality of the middleware layer is providing a common set of device function-

alities [1, 13, 24]. The middleware layer can also be divided into sub-layers. It is divided into two

sub-layers in [1], which are the object abstraction and the service management layers. The service

management layer pairs services of objects with requests for them, processes received data, and

makes decisions, while the object abstraction layer transmits data collected by objects to the ser-

vice management layer. Cloud computing and data management processes are implemented at the

object abstraction layer. Other papers have proposed a middleware layer that is divided into three

sub-layers: an object abstraction, a service management, and a service composition layer [8, 24].

The service composition layer offers the functionalities for the composition of single services,

which are represented at the service management layer.

An approach to integrating cloud computing as a middle layer in the IoT architecture is pro-

posed by Gubbi et al. [29], where the IoT architecture includes three layers: a wireless sensor

networks layer, a cloud computing (middle) layer, and an application layer. Integrating cloud

in the middle offers various functionalities to support a middleware layer. Gubbi and other re-

searchers [13,14,57,60] have discussed the features of integrating cloud computing with the Inter-

net of of Things.

The object abstraction layer is discussed in many papers, although they offer slightly different

definitions. In [8], this layer consolidates access to the heterogeneous devices in the object layer,

while in [24], it allows physical objects in the object layer to deliver their capabilities and features

to the upper layers. It is also called virtual object layer in [68]. Virtual object is defined in [73]
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comprises both current and historical information about a specific physical object. However, Ama-

zon called virtual objects as device shadows which persist both last and desired future status of

each device even when the device is offline. The advantages of representing virtual object (e.g.,

digital counterpart of physical objects) as major component of IoT are discussed in depth in [52].

2.1.3 The Application Layer

Application layer is the top most layer of the IoT architecture, and it delivers services and system

functionalities to the end users. The application layer presents the information to users through

merged and analyzed data. This layer exploits the functionalities of the middleware layer and pro-

vides a rich and user-friendly application of the IoT. Using applications is an easy way to remotely

communicate to objects (devices) and present their information. The final received information

from the middleware layer can be used to create models, graphs, and flowcharts, which can sup-

port decision-making [1, 8, 74].

2.2 IoT Major Issues

The basic idea of the IoT concept is the pervasive presence of a variety of connected objects [8]

that implement any possible interaction [52]. The evolution of IoT has encompassed various tech-

nologies that assist in the delivery of smart objects, which provide real-world awareness and inter-

activity [42]. In the following sections, we will review the IoT issues that we recognized.

2.2.1 Devices Heterogeneity

As IoT environment characterized by the pervasive presence of networked objects, different capa-

bilities of computations and communications are presented. For example, different protocols are

developed for networking such as ZigBee and Bluetooth, but each protocol has its own specific

characteristics. Thus, the management of this heterogeneity is a considerable point in modeling a

unified IoT architecture [49, 52].
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2.2.2 Scalability

With an expected 50 billion smart objects in existence by 2020, scalability issues arise, such as

communication with an enormous number of objects, management of the digital counterparts of

objects, and management of an enormous number of service execution options. Thus, management

of this very-large-scale system is very demanding [49, 52].

2.2.3 Addressing and Identification

The development of the Internet has led to people being interconnected, but the current trend is

leading to objects being interconnected. Thus, all heterogeneous connected objects in the IoT need

to be identified with a unique ID that facilitates objects interconnection. This identifier can also

facilitate controlling and gathering information from objects. This could be done mainly in two

ways. Objects could be identified by physically attached tags such as RFID tag [49], or they may

be addressed by Internet protocols such as IPv6 [75]. Lately, solutions have been developed to run

in resource-constrained environments such as Message Queue Telemetry Transport (MQTT) [35].

2.2.4 Self-Organization Capability

Once objects have been identified and become networked, it is necessary to communicate addi-

tional information about them. Thus, objects need to organize themselves, and the functionalities

and services of objects need to be announced. Also, applications need to dynamically discover

these functionalities and services. Identified objects can interact with each other without human

intervention. However, integrating functionalities and/or services that are provided by objects and

dynamically searching for and discovering these functionalities and/or services [25] are issues in

an IoT system.

2.2.5 Constrained Resources

Often, objects in the IoT may not be able to implement intensive computational tasks and store

big collected data. This is because of limited energy, storage, processing of intensive tasks, etc.
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For example, wireless sensors have limited amounts of battery and do not have enough space to

implement complex computational tasks. Therefore, objects need to collaborate with another party,

such as using the cloud [13, 57], to overcome their limitations.

2.2.6 Mobility

In a wireless context, one reason for complicity is device mobility. In the IoT, objects are very

likely to be mobile [82]. Mobility management is essential to provide unified connectivity regard-

less where the objects are located or moved to. Objects could be moved to a different cell within

the same system or it could be moved to a totally different system. All kinds of mobility need to

be taken into consideration.

2.2.7 Security and Privacy

Pushing IoT technology into the real world will require overcoming security problems. Since the

IoT architecture comprises pervasive heterogeneous objects, big collected data, entities interacting

with each other, and applications interacting with the entities, security is one of the most important

issues in designing such architecture. Protecting the data and services and controlling the number

of critical incidents will affect the entire IoT. However, protecting the IoT is a complicated and

challenging task because global connectivity and accessibility are key aspects of the IoT. Many

security and privacy issues need to be addressed, such as resilience to attacks, data authentica-

tion, access control, and client privacy to address threats such as denial of service (DoS), physical

damage, and eavesdropping [61, 82].

2.3 Integration of Cloud and IoT

An approach that integrates cloud computing as a middle layer in the IoT architecture is proposed

by Gubbi et al. [29]. Other researchers have described the integration of cloud and the IoT by

a specific name, such as the CloudIoT [14, 57]. Many of the papers reviewed have discussed

advantages of integrating cloud computing with the Internet of Things, but several other papers see
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that the IoT as filling the Cloud’s gaps (mostly the limited scope) [14]. We will discuss benefit of

this integration as follows.

2.3.1 Communication

Communicating among pervasive objects and applications is one of the key aspects of the IoT.

The management of this communication, which can be from anywhere at any time, can be very

expensive. The cloud supports effective and economical solutions to connect, track, and manage

things from anywhere at any time through customized portals and built-in apps [14, 60]. Thus the

cloud can help in delivering managed data and services to the application layer.

Although communication can be improved and simplified by using the cloud, communication

problems, such as bottlenecks or connection failures, require specific support to avoid an accumu-

lation of errors. These problems could arise from scenarios where transferring a huge amount of

data or continuous transfer of data is required [14].

2.3.2 Storage

IoT is a rich producer of big data [21] that is collected by objects. The data repository for storing

such big data will need enormous space to encompass all the possible collected data. Also, the

data needs to be organized and analyzed before being delivered to applications. All these tasks can

be provided by the cloud, which has a virtually unlimited, low-cost, on-demand storage capacity.

It can assist with data aggregation, integration, and preservation. Thus, with the cloud, data can be

accessed from anywhere [14].

2.3.3 Computation

Since objects in the IoT have limited energy, storage, processing of intensive tasks, etc., integrating

cloud computing, which offers the capacity for the storing, analyzing, computing, and visualization

of big collected data [29], with IoT is promising. To make sense of the collected saved data, it is

important to develop artificial intelligence algorithms, which can be offered by the cloud. Decision-
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making also needs artificial intelligence algorithms to allow aggregation and combination of data

as well as to permit accessing to this data. These algorithms are also used in the analyzing and

visualizing processes, to support interpretation of the collected data [71].

2.4 Access Control Models

2.4.1 General Access Control Models

Access control is a fundamental service that supports security in various systems. The fundamental

access control approaches involve an Access Matrix, which is a conceptual model that indicates

the right that each subject possesses for each object. Correspondingly, there is an access control

list (ACL) that stores the matrix by columns [31,67], where each object is associated with an ACL.

while each subject is associated with a capability list that stores the matrix by rows [31, 67].

Other earlier approaches include discretionary access control (DAC) and mandatory access

control (MAC) [66, 67]. DAC allows owners to control the access of users to objects. For each

request of a user to access objects, the object authorizations are checked to validate whether an

authorization that the user can access exists or not. Despite the flexibility of DAC, it is not adequate

to enforce information flow policies since copying information from one object to another is not

constrained. MAC is an approach that constrains information flow policies by assigning subjects

and objects a security level (also called a clearance). Users have no discretion to decide which

users are allowed to access specific objects.

Role-based access control (RBAC) model is an access control approach that has been frequently

used and continue to be the desired delegated technology. With this approach, an administrator

creates roles that present specific tasks; grants permissions to those roles (permission-role assign-

ment), which are difficult to change; and assigns users to those roles as regards their responsibilities

(user-role assignment), which can be changed more frequently. Mathematically, roles hierarchies

are partial orders, which are reflexive, transitive, and antisymmetrical relations [64].

Provenance-based access control (PBAC) use provenance data to make access control decisions

to targets. The provenance data could be related to specific user or object, and it could be data of
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transaction records that are captured in a system. [50] identified the possible use of provenance

data in classifying traditional Dynamic Separation of Duties (DSOD) issues.

Relationship-based access control (ReBAC) has been widely studied and adapted for access

control in online social networks (OSNs). The authorization policies are typically expressed in

terms of relationships of the requester and the target [17]. Generally, ReBAC alone is not enough

to enforce different security and privacy requirements that meet today systems growth. ReBAC is

integrated with attribute-based policies in [18].

Attribute-Based Access Control (ABAC) model is a form of access control that has recently

attracted the interest of both academic and industry researchers. The National Institute of Stan-

dards and Technology (NIST) recently described a high level access control model that uses at-

tributes [33, 34]. Jin et al [40] have proposed a unified ABAC model that can be configured to

the traditional access control models (i.e., DAC, MAC and RBAC). Researchers have also stud-

ied combining attributes with RBAC. Kuhn et al [43] presented models that combine ABAC and

RBAC in various ways, while Yong et al [78] proposed extending the roles of the RBAC with

attributes. Al-Kahtani et al [2] introduced the notion of using attributes in user-role assignment of

RBAC model. Thus there has been a tradition of research on combining or relating attributes to

various access control models, old and new.

A novel approach to combining attributes with the access matrix was developed by Zhang et

al [79], who defined the attribute-based access matrix (ABAM) model by adding attributes to the

classic HRU model [31]. In the HRU model each cell [si, oj] of the access matrix contains a set of

rights that subject si can exercise over object oj . In general, a subject is also an object while every

object is not necessarily a subject. Subjects and objects are collectively called entities. ABAM

additionally associates a set of attributes ATT (o) with each entity o. A notable aspect of ABAM

is that its commands not only test for and modify rights in access matrix cells like in HRU, but

can further test for and modify attribute values. Henceforth we understand ABAM to mean finite

ABAM.

The features of attribute testing and modification, also called attribute mutability, were adapted

17



in ABAM [79] from the earlier UCON model [56]. UCON incorporates various additional features

such as ongoing authorization and updates, as well as obligations and conditions. The sub-model

of UCON called PreUCONA [56,59] where attribute testing and modification are carried out prior

to allowing access. Similar to finite ABAM, in finite PreUCONA the set of attributes is finite

and each attribute of an entity can only take on a finite set of permissible values. Henceforth, we

understand PreUCONA to mean finite PreUCONA.

We have published a study that investigates the theoretical relationship between ABAM and

PreUCONA [5]. Our first observation is that ABAM is an extension of HRU and thereby inherits

the undecidable safety results of HRU. On the other hand PreUCONA is known to have decidable

safety analysis [59]. It follows that ABAM cannot be reduced to PreUCONA. On the other hand,

we show how PreUCONA can be reduced to ABAM. This construction inspires us to define a

restricted version of ABAM named RL-ABAM2, which stands for right-less ABAM with two

parameters as will be explained. We then prove that PreUCONA and RL-ABAM2 theoretically

have equivalent expressive power.

Our constructions suggest the power of using formulas in PreUCONA, absence of which in

ABAM leads to having to an explosion of ABAM commands in the PreUCONA to ABAM reduc-

tion. Conversely, the ability to activate multiple rights in a single RL-ABAM2 command leads to

multiple PreUCONA commands in the ABAM to PreUCONA reduction. These features could be

combined in a more usable model. Finally, the study of ABAM indicates that a safe application

of access rights could be based on the following principles. Firstly, do not use rights in the if part

of commands. Secondly, some rights could be left behind by commands so their next use is more

efficient. Our comparative study of PreUCONA and ABAM suggests there is a meaningful place

for access matrix rights, even as access control research and practice is tending towards attributes.

2.4.2 Access Control Models for IoT

Several access control models for IoT have been proposed to address security and privacy issues,

as surveyed in Ouaddah et al [54]. Using capability-based access control (CAC) model for IoT
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has been proposed because entities hold granted rights that support different levels of granularity

with possibility of delegation, while similar functionality is not feasible with ACLs. However, the

main two major drawbacks of using the capability approach are propagation and revocation [28].

Mahalle et al [47] propose the identity authentication and capability-based access control (IACAC)

model, where devices use an access point and the CAC model to be connected to each other. More-

over, in [30], the capability-based access control system (CapBAC) is used in controlling access

to services and information. The authors described use cases and argue that CapBAC supports

rights delegation, least privileges access principle, more fine-grained access control, fewer secu-

rity issues, and fewer issues related to complexity and dynamics of subject’s identities than ACLs,

RBAC and ABAC. In [77], a simple-efficient mutual authentication and secure key establishment

based on ECC, which has much lower storage and communication overheads, is proposed for the

perception (object) layer of the IoT.

2.4.3 The Publish and Subscribe Communication Paradigm

The publish/subscribe communication interaction scheme is suitable for large-scale distributed

interactions such as IoT. It lets subscribers indicate their interest in topics (events) services that

manage and deliver data generated by publishers. In other words, producers publish data on a

software bus (topic/event service), and consumers subscribe to the information they are interested

in receiving from that bus (topic/event).

The publish/subscribe paradigm has various implementation styles [10, 23], primarily topic-

based and content-based. The topic-based scheme is similar to the notion of groups where con-

sumers (subscribers) become members of a topic (a group), and producers (publishers) publish

data to a topic. All subscribers to that topic are informed about the published data. In contrast, the

content-based approach introduces a subscription scheme based on the published content. Here,

subscribers specify filters, which define constraints based on the name-value pairs of the published

properties (content) and use single or combined basic comparison operators (=, <, ≤, >, ≥) to

identify events of interest [10, 23].
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2.5 The General Access Control Model for AWS-IoT (AWS-IoTAC)

Figure 2.1: AWS IoT Access Control (AWS-IoTAC) Model within a Single Account [12]

Bhatt et al [12] study AWS IoT as a major commercial cloud-IoT platform, and develop a

formal access control model for AWS-IoT called AWS-IoTAC. This access control model is an

extension of AWS access control (AWSAC) model previously developed by Zhang et al [80] for

AWS access control in general.

AWS-IoTAC comprises all the components and relations of AWSAC with modified or extra set

of components and relations related to the AWS IoT service. The main component of AWSAC are

Accounts (A), Users (U), Groups (G), Roles (R), Services (S), Object Types (OT), and Operations

(OP). The additional components in AWS-IoTAC, which are related to AWS IoT service, are Cer-

tificates (C), IoT Objects (IO), IoT Operations (IOP), Rules (Ru), Virtual Permission Assignment

(VPA), and Devices (D).

Users can access cloud resources through an account when they authenticated by AWS IoT.

Within users account, they can give permissions or create new users. Thus, they own their accounts
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as an administrator. Users also can be part of one or more than one group. Users can have one or

multiple roles to allow them to gain access to corresponding cloud resources (services), which have

one or multiple objects type. Objects can have one or more assigned operations, which represent

the allowed operations on the object types based on an access control policy that is attached to

them. All the previous component already existed within AWSAC.

Within AWS IoT service, the AWS IoT Service (AIS) is appeared to support IoT devices and

their underlying authorization in the cloud. Also, certificates can be used by IoT devices or appli-

cations to authenticate to AIS and authorized to communicate with IoT Objects. Each certificate

is attached with IoT Operations to authorize devices to communicate with the AWS IoT Service.

When devices such as sensors are connected with AWS IoT, set of virtual IoT Objects called things

or thing shadows can be used to represent them in the cloud even when they are disconnected. The

functionality of these entities and their relationship to each other are shown in figure 2.1 and for-

mally described in [12].
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Chapter 3: ACCESS CONTROL MODELS FOR CLOUD-ENABLED

INTERNET OF THINGS: A PROPOSED ARCHITECTURE AND

RESEARCH AGENDA

Acknowledgment: The materials in this chapter are published in the following venue [4]:

• Asma Alshehri and Ravi Sandhu. Access control models for cloud-enabled internet of things:

A proposed architecture and research agenda. In the 2nd IEEE International Conference on

Collaboration and Internet Computing (CIC), pages 530-538. IEEE, 2016.

This chapter describes our proposed access-control oriented (ACO) architecture for cloud-

enabled Internet of Things and the characteristics of each layer. This architecture serves as a

framework to build access control models for a cloud-enabled IoT.

3.1 Motivation and Scope

With the development of wireless communication systems over the last few decades, the concept

of Internet of Things (IoT) has emerged and has recently attracted increasing attention of gov-

ernments, companies, and academia. The IoT is an extension of network technology, where the

basic core of communication is the Internet. The promising IoT paradigm integrates many widely

dispersed, mobile, abundant, heterogeneous objects, such as sensors and actuators that collect data

from an environment and in turn act upon it. Many industries have initiated major projects even

in the absence of widely accepted architectures for IoT. Thus, there is a crucial need to develop

consensus architectures for the future IoT.

There have been various proposals for IoT architecture in the research literature. The proposed

IoT architectures can be divided into three main layers: an object layer, one or more middle layers,

and an application layer. The main difference in detail between them is in the middle layers. Some

architectures abstracted the middle layers to only one layer [76], while others have two or more

middle layers [1, 8, 58, 74].
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Integrating the cloud as a central entity is suggested in various IoT architecture [1,8,58,61,74].

The IoT can gain advantage from the powerful capabilities and resources of the cloud to offset its

technological constraints. The IoT encompasses pervasive and heterogeneous objects that produce

big non-structured or semi-structured data. IoT objects have limited computational power and

low storage. Offering virtually unlimited computational capabilities, low-cost, on-demand storage

capacity, and ubiquitous resources usable from everywhere, the cloud is the most convenient and

cost-effective solution to deal with IoT technological constraints [13, 14, 57, 60].

Moreover, several research papers have suggested incorporating an object abstraction layer as

an essential part of IoT architecture. Atzoori et al. [8] argue for such a layer to unite access to the

heterogeneous devices in the object layer. Evangelos et al. [24] suggest the benefit of exposing

the capabilities and services of objects to the upper layers through such abstractions. A similar

definition as [24] is given in [68] with the name of ‘virtual object layer’. A virtual object is also

described in [73] as comprised of both current and historical information about a specific physical

object. A virtual object is called a device shadow in Amazon Web Service (AWS) IoT, which

persists the final and desired future status of each device, even when the device is offline. The

potential benefits of using virtual objects are discussed in depth in [24], with respect to IoT issues

such as scalability, heterogeneity, security and privacy, and identification.

In this chapter, we take a first step toward our eventual goal of developing an authoritative

family of access control models for a cloud-enabled Internet of Things. We build upon previously

published IoT architectures, which are all roughly divided into three layers: an object layer, one

or more middle layers, and an application layer. In the different approaches the middle layer is

divided into sub-layers differently. Since several papers discuss the advantages of using the cloud

and virtual objects to solve IoT issues, our proposed access-control oriented (ACO) architecture

supports using them in the middle of object and application layers. As a result, our proposed

architecture is divided into four layers: an object layer, a virtual object layer, a cloud layer, and an

application layer. This 4-layer architecture will be our guide to build access control models for a

cloud-enabled Internet of Things. Within this architecture, we present several illustrative examples
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that expose some IoT access control issues. This leads us to discuss needed access control research

to address these issues.

In the following sections, we propose a cloud-based IoT architecture and its characteristics

in Section 3.2. Illustrative examples are discussed in Section 3.3. A research agenda for access

control based on our proposed architecture is discussed in Section 3.4.

3.2 Access Control Oriented Architecture for IoT

From the reviewed papers, we conclude that there is a need for integrating the cloud with the IoT

architecture and a benefit to using virtual objects as a counterpart of physical objects. Therefore,

we propose an IoT architecture that emphasizes enabling cloud computing to support middleware

and service management functionalities. Our architecture is designed to assist in proposing access

control (AC) models for IoT, and thus we call it an AC-oriented (ACO) architecture for the IoT.

We will show the details of this architecture and examples of it in this section.

Our ACO architecture is designed to be roughly close to the general architecture of the IoT

that is divided into three layers: the application layer, one or more middle layers, and the object

layer. Therefore, we kept the two basic layers (the application and object layers) that exist in all

of the reviewed IoT architectures. However, the middle is divided into two layers: a virtual object

layer and a cloud services layer. Therefore, our architecture basically includes four main layers:

an object layer, a virtual object layer, a cloud services layer, and an application layer. Figure 3.1

represents the layering of ACO architecture for the IoT where object layer appears at the bottom

and application layer at the top. Each layer has its components and functionalities. We discuss

each layer below.

3.2.1 The Object Layer

This layer is similar to most of the object layers that we reviewed. The main task of this layer is to

collect data from physical environment and to construct a broad overview of the data to send it to

the upper level (virtual object layer) or to other objects. This layer includes heterogeneous types
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Figure 3.1: ACO Architecture for the Cloud-Enabled IoT

of objects such as sensors, actuators, and cameras, which form one cluster or multiple clusters of

objects.

Objects at this level basically push collected data to upper layers, such as data collected from

sensors. However, objects at this layer also can receive information from other objects or from

higher layers. For example, a light bulb needs to receive a command to be turned off or on. Thus,

data at object layer could be output of objects or input to them.

The object layer is on the bottom of the IoT architecture. Users can directly communicate

with objects by pressing a button, changing a device, powering on an object, etc. Objects in this

layer can communicate with other objects directly through communication technologies such as

Bluetooth, Wireless, ZigBee, 6LoWPAN, ISA 100, WirelessHart/802.15.4, 18000-7, and LTE [1].

They can also communicate to their virtual objects (digital counterparts) through the Internet. In

both communication directions, there is a need to authenticate the communication possibly using

technologies such as public key infrastructure (PKI) or digital certificates.

The physically connected objects could be intentionally or unintentionally turned off or on.

At the same time, the input/output data of physical objects could be needed/reached any time.

Thus, knowing the status of objects in IoT architecture is required. One way to do it is to have
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virtual objects of physical objects. In addition, most of the physical objects will have limited

computational power and low storage, and can only implement simple computational tasks and

save limited data. Since IoT relies on vast sets of collected data, these physical objects need

to depend on another party to execute intensive computational tasks, as well as to voluminous

collected data. This party will be the cloud services layer, which will be described in Section 3.2.3.

3.2.2 The Virtual Object Layer

In the virtual object layer, virtual objects (digital counterparts) can present a persistent current

status of objects if both are connected. In case the virtual and physical objects are not connected,

virtual objects could also present a desired future status, the last received status of a physical object,

or both the future and last received status. Virtual objects deliver the services and capabilities of

physical objects to users. Virtual objects can have a subset of physical objects’ services, all of

the physical objects’ services, or one of physical objects’ services. In our model, we will assume

virtual objects only for physical objects. There is no digital counterpart for users (although that

may be appropriate as the architecture and functionality evolve).

Using virtual objects solves IoT issues such as scalability, heterogeneity, security and privacy,

and identification. Thus, the virtual objects in this layer can uniformly communicate with each

other regardless of heterogeneity and locality in the object layer. This communication needs to

be controlled by appropriate access control mechanisms, such as RBAC [64] or ABAC [40], or

ReBAC [17]. Studying the benefit of using multiple access control mechanisms is also possible [5].

Virtual objects can be associated with physical objects in various ways. The simplest is to

represent one virtual object with one physical object (if any) that has one or many services, thus

leading to a one (or less)-to-one association [44]. With an object that has many services, there is

also the possibility of representing one virtual object for each service, thus leading to a one-to-

many association. For example, a smartphone could represent all of its services through a single

virtual object (one-to-one), or it could have separate virtual objects one for each available service,

e.g. one for location sensing and one for temperature sensing, thus resulting in a one-to-many

26



association [37, 52]. Another way would be to represent a set of physical objects with one virtual

object, for instance, to manage them more efficiently with less resource consumption than having

a distributed implementation (many-to-one) [52,62], or to collect the information of single service

from various physical objects (many-to-one) [52, 69]. Thus, the combination of all different kinds

of associations will lead to many-to-many association [38].

3.2.3 The Cloud Services Layer

This layer is built to assist most of the functionalities related to the service/middleware layer. With

an expected 50 billion smart objects in existence by 2020, attention must be focused on developing

the means to access, store, and process the huge amount of data collected by these objects. Thus,

this layer assists in storing and processing the big collected data. The saved data in this layer can

also be used intelligently for smart monitoring and actuation, and it can be visualized in ways that

are more meaningful for users. Thus, policymakers (or administrators) can utilize the visualized

data to help them to modify or add policies that are kept in the cloud, so the communication and

access between applications and objects are managed through the cloud. The cloud services layer

also assists in the intensive computational tasks that cannot be handled by the constrained objects.

Thus, the cloud services layer supports the computation, visualization, and analysis of stored data

in the cloud.

In addition to managing the communication with applications and objects, clouds can also

communicate with each other, ranging from only providing services and information at a local

level to collaborating with other connected IoTs in order to share information at a broad level

and pursue common goals. Hence, multi-cloud communication can occur at this layer. As we

mentioned above, controlling accessing to data and entities communications can be controlled by

suitable access control mechanisms such as RBAC [64], ABAC [40], and ReBAC [17].
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3.2.4 The Application Layer

The application layer is the top most layer of the proposed ACO IoT architecture and offers an

interface through which users can easily communicate with objects and visualize the analyzed in-

formation. Administrators can also interact with applications to generate policies or to update/add

policies based on the obtained information. Moreover, configuring and managing the communi-

cation of objects and virtual objects is organized by administrators through applications. Gen-

eral users and administrators can remotely communicate with IoT objects and virtual objects only

through applications. For example, a user who is out of her home can use an application to send

a turn off command to remote light bulbs located at her home. Applications communication with

any entity should be controlled and authorized by using appropriate access control techniques.

3.3 Illustrative Example

The proposed ACO architecture for the IoT in the previous section is illustrated in more concrete

terms in Figure 3.2 in context of a simple example.

3.3.1 Multi-Value Switch Use Case

In our example, we have a multi-value switch that can change the color of a light bulb to red, blue,

or green. Users communicate directly (and physically) with the multi-value switch to turn on the

light bulb with a specific color. We will discuss each layer as follows.

The Object Layer

Although our ACO architecture in general allows objects to communicate directly to each other,

we don’t allow that in our example for simplicity. Therefore, the multi-value switch and the light

bulb (objects) do not communicate with each other directly at this layer. Both of the multi-value

switch and the light bulb connect to the Internet via secure channels to communicate with their

virtual objects. Thus, the only communication allowed is with the virtual object layer.

Figure 3.2 shows one multi-value switch (object) that enables a color changing service. In
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Figure 3.2: Multi-Value Switch Use Case for the ACO Architecture

other words, we have a physical object that has one service. Therefore, there is one virtual object

that can associate with each multi-value switch, leading to a one-to-one association with the virtual

object. Also, there is only one light bulb that receives a command to change its color, and for that

light bulb there is one associated virtual object.

Users can directly interact with the light bulb and the multi-value switch by powering them

on or off, changing them, or moving them, etc. Also, users can interact with multi-value switch

by pressing a color. In our example, the collected data is only coming from users’ action. When

users press a color in the multi-value switch, the command is sent to virtual objects. The light bulb

also needs to communicate with its virtual object to receive the new color; otherwise the color will

stay the same. Over time, collected commands and received colors from the multi-value switch

generate data that can be logged and saved.
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The Virtual Object Layer

The virtual multi-value switch and virtual light bulb (virtual objects) store information about their

corresponding physical objects. The virtual multi-value switch saves the current pressed command

in the multi-value switch if they both are connected, and it will save the last received command in

case they are not connected. Similarly, the virtual light bulb will maintain the current color of the

light bulb if they both are connected, and it will also save the last received color (the future color

of the light bulb once it is connected) in case they are not connected. The current, past, and future

status can be presented via list of attributes (e.g.‘current-status’, ‘past-status’, and ‘future-status’)

that are saved in the virtual objects.

The two virtual objects communicate in three different ways. They communicate with their

physical objects. They also communicate with each other directly at this layer. One familiar com-

munication model between virtual objects is publish/subscribe [7]. Our simple use case has two

topics: ‘update’ and ‘update/accept’. The virtual multi-value switch publishes to ‘update’ topic,

and the virtual light bulb subscribes to ‘update’ topic and thus receives any published command to

change the state of the color; and vice versa with ‘update/accept’ topic. Finally, virtual objects can

communicate with the cloud services layer to log and save the sending commands and the received

colors, store the number of disconnections with physical objects, share attributes with the policy

decision point (PDP), and receive authorized topics to publish or subscribe, and so on.

The Cloud Services Layer

This layer supports cloud services such as compute, storage and analysis of stored data. As shown

in Figure 3.2, the cloud services layer has data storage that saves all the collected data (as discussed

above). This data can be analyzed and visualized to decision makers to understand, for example,

the difference between the number of sent commands from multi-value switch and the number of

received commands to light-bulb.

The policy component stores rules that allow virtual objects to publish/subscribe to ‘update’ or

‘update/accept’ topics. In our example, the light bulb is allowed to publish to ‘update/accept’ topic
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but not to publish to ‘update’ topic. Policy rules are constructed and managed by administrators

who communicate to this layer through applications. The PDP communicates with policy and data

storage components, and with virtual objects to retrieve required information (e.g. roles and at-

tributes) for making a decision [34]. For instance, it decides whether or not users can communicate

to virtual objects and thus objects themselves.

The Application Layer

This layer includes applications to view the analyzed and visualized saved information, such as

past statuses of the multi-value switch and the light bulb. The applications allow the owner of the

multi-value switch and light bulb to control communication between virtual objects, users’ access

to the saved data, and communication between applications and objects by constructing policies

that are used by the PDP, which control various kinds of communication.

3.3.2 Multi-Value Switch Use Case Enhancements

Our use case showed a very simple scenario that has only two objects. Each object has one-to-

one association with its virtual objects. This example can be enhanced in several ways such as

adding multi-value switches and virtual objects, allowing direct communication between switches

and light bulbs, or permitting collaborative multi-clouds, etc. Some examples of the enhancements

are discussed as below.

As the number of rooms increase, more light bulbs are needed, and thus using one multi-value

switch can control all of them efficiently. Introducing more light bulbs that connect to one vir-

tual light bulb leads to a many-to-one association on the light bulbs side, which helps to manage

them more efficiently, while there is a one-to-one association on the multi-value switch side. Fig-

ure 3.3(a) shows how one multi-value switch can control many light bulbs. However, how to

control each room with different color is not clear with a many-to-one association on the light bulb

side.

On the other hand, looking to control many rooms separately will result in increasing the num-
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Figure 3.3: Different Kinds of Objects and Virtual Objects Associations

ber of multi-value switches, virtual multi-value switches, and virtual light bulbs. Designing a smart

multi-value switch that considers how many times the red, the green, or the blue button has been

pressed can result in a one-to-many association. In other words, this smart multi-value switch

is associated to many virtual objects, rather than having multiple multi-value switches, each of

them is associated with one virtual object. Figure 3.3(b) shows that with two groups of light bulbs

(two rooms), each group associates with a different virtual light bulb (multiple many-to-one asso-

ciations). The smart multi-value switch will be associated with two virtual multi-value switches.

The first virtual multi-value switch is for the first group of light bulbs, and the other one is for

the second group. Hence, two many-to-one associations are on the light bulbs side, while one-to-

many association is on the smart multi-value switch side, which decreases the cost of having many

multi-value switches.

In our simple case example, there is a one-to-one association on both the light bulb and the

multi-value switch. One virtual multi-value switch is communicating with one virtual light bulb

by pushing to ‘update1’ topic (this update is only for specific virtual object(s)). As a result, there

are only two topics to publish and subscribe: ‘update1’ and ‘update/accept’ topics. However,

Figure 3.3(b) shows more topics since we are looking to control two separate groups of light bulbs.
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Thus the ‘update1’ topic is for the first group and ‘update2’ is for the second one. In this case,

adding a third group of light bulbs to be controlled separately will increase the number of topics.

One advanced enhancement is having groups of light bulbs and multi-value switches in one

city, each group is for one neighborhood. The logged data, such as historical multi-value switch

commands, is saved in the cloud. Another city that has a different cloud would like to communicate

with the first city’s cloud and retrieve the analyzed historical multi-value switch commands to

discover the most required color in that city, for example, or to study the difference between the

number of sent commands from multi-value switch and the number of received commands to light-

bulb, and so on. This case shows why different clouds could communicate and collaborate within

the cloud services layer in multi-cloud collaboration.

In the application layer, a smart phone could have an application that displays for users the

current color, the past color, and the future color of a light bulb, as well as an illustrative graph

that visualizes the number of times each color has been pressed so that users can understand what

the most desired color has been. In addition to multi-value switch commands, an application could

allow users to control the light bulb color remotely by pressing the required color and transmitting

it within the cloud and the virtual object layer.

3.3.3 Controlling Communications and Data Access

Various access control models have been discussed such as attribute based access control model

(ABAC) [40], relationship based access control model (ReBAC) [17], and role based access control

model (RBAC) [64]. Access control models such as these can be employed to control communi-

cations between entities and controlling accessing to data.

In our simple use case, we can control virtual objects communication by adapting an appro-

priate access control model. ABAC model, for example, shows its capability for accommodating

the need of the IoT in terms of the unlimited increase of objects. ABAC can be used to control

communication between our two virtual objects: the virtual multi-value switch (VO1) and the vir-

tual light bulb (VO2). Controlling which virtual objects are authorized to publish or subscribe to
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Figure 3.4: Using ABAC to Control Virtual Objects Communications

a specific topic is important here. In our case, the VO1 needs to be authorized to publish to the

‘update’ topic and subscribe to the ‘update/accept’ topic, while the VO2 needs to be authorized to

subscribe to the ‘update’ topic and publish to the ‘update/accept’ topic.

For both of the two virtual objects, we have the following attributes: {Type1, Location, Current-

color, Past-color, Future-color, Publish, Subscribe}. Each attribute has different range, so the

range of each attribute is as following: range: range(Type1) = {‘apple switch’, ‘apple light bulb’},

range(Location) = {‘home1’}, range(Current-color) = range(Past-color) = range(Future-color) =

{‘red’, ‘green’, ‘blue’}, and range(Publish) = range(Subscribe) = {‘update’, ‘update/accept’}. We

assume that Type1 and Location attributes’ values are already assigned for both of the two virtual

objects. Thus, a virtual object is allowed to either publish to ‘update’ topic if it is with Type1

‘apple switch’ and is located at ‘home1’, or it is allowed to subscribe to ‘update’ topic if it is with

Type1 ‘apple light bulb’ and is located at ‘home1’, and vice versa for the ‘update/accept’ topic.

Figure 3.4 shows the authorization policy to publish or subscribe to ‘update’ topic and VO1 and

VO2 attributes.

34



Historical sent commands (HSC) from VO1 and historical changed colors (HCC) of VO2 can

be logged in the cloud storage. In that case, access control techniques are needed to control ac-

cessing to historical data. For example, an application (App1), which represents information about

historical sent commands and received colors, needs to access data storage to get that informa-

tion. This application has the following attributes: {Type2, Located-objects}, and their ranges are

as follows: range(Type2) = {‘apple switch-bulb’}, range(Located-objects) = {‘home1’, ‘home2’}.

We assume that the application is already identified and the Type2 and Located-objects attributes

values are already assigned for the application. By using ABAC model, applications can access

historical sent commands and historical changed colors only if they have the following attributes

values: Type2 = ‘apple switch-bulb’ and Located-objects = ‘home1’. Figure 3.4 shows the autho-

rization policy that allow an application to access historical data and application saved attributes.

Also, it shows information that can be presented via the application (App1).

3.3.4 Object Life Cycle Issues

Looking to object layer in our simple use case, we have two objects that need to be designed with

at least basic requirements of Internet of Things objects. For example, multi-value switches that

do not connect to the Internet and communicate with virtual objects are not eligible to be placed

with the Internet of Things objects. Thus, objects need to be designed and built to communicate.

Objects need to hold identifiers to be recognized once they connect to the Internet. With object

identification, each object could be mapped to their virtual objects and authorized for communi-

cation with virtual objects. In our example, we have the virtual multi-value switch and the virtual

light bulb. The decision of mapping light bulb to virtual multi-value switch or to virtual light bulb

will need the light bulb identifier. Therefore, identifying objects is one important aspect of the

object layer.

For each object there is at least one owner responsible for configuring that object, controlling

its communication to other objects, and authorizing users and application to control/connect to this

object. In other words, owners are the only users who can manage object policies. The multi-value
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Figure 3.5: Recognized Access Control Issues within ACO Architecture

switch in our example is permitted to send a command color only via owner authorization policy.

As a result, we can say that ownership is significant for object security.

Designing objects to communicate with the assistance of identifiers and owner guidance leads

to the secure deployment of these objects [36]. The secure communication of objects needs to

be maintained periodically for these objects. The light bulb, for example, needs to be checked

frequently for whether it is still permitted to communicate with a virtual light bulb or not. Ad-

ditionally, objects or virtual objects that are not working any more or are not needed need to be

changed or removed. Thus, ownership and policies of retired objects should be revoked for security

purposes.

3.4 Research Agenda

Our use case reveals different possibilities of communications among entities in each layer and

in different layers. As a result of these communications, the collected data flows among entities

in various layers. From our ACO architecture and illustrative examples, we recognize two major

issues that need to be controlled: communications among entities, and data that flows through these
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communications. Figure 3.5 represents the general two main recognized issues and entities in each

of them. As an initial step toward understanding and introducing access control models for virtual

objects communication, a simple example of using ABAC model to control a publish/subscribe

communication style between virtual objects is discussed above in Section 3.3.3.

General Issues may also appear and need to be handled. For example, the existence priority of

physical objects and their virtual objects is one issue. it is important to address questions such as

whether virtual objects exist first or physical objects?. Also, administrator and users both access

through applications, so it is important to distinguish administrators from users. Questions such

as “ How administrators control communications between entities at same and different layers?”,

“What kinds of actions that are self-control?”, and “What kinds of actions need direct control from

administrators?” need to be considered.
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Chapter 4: ACCESS CONTROL MODELS FOR VIRTUAL OBJECT

COMMUNICATION IN CLOUD-ENABLED IOT

Acknowledgment: The materials in this chapter are published in the following venue [6]

• Asma Alshehri and Ravi Sandhu. Access control models for virtual object communication

in cloud-enabled IoT. In Proceedings of the18th International Conference on Information

Reuse and Integration (IRI). IEEE, 2017.

This chapter proposes and discusses operational and administrative access control models for

virtual object communication.

4.1 Motivation and Scope

The concept of the Internet of things (IoT) originated from the evolution of wireless commu-

nication systems over the last few decades. The technologies of sensing, networking, software

architectures, information management, data analytics, and visualization all converge in IoT. The

IoT gives rise to new security challenges that call for a significant revision of current security solu-

tions, including access control systems. In the prior chapter we have developed an access-control

oriented architecture (ACO) [4] for cloud-enabled IoT, comprising four layers: an object layer, a

virtual object (VO) layer, a cloud services layer, and an application layer (see Section 3.2). ACO

architecture recognizes the need for communication control within each layer and across adjacent

layers, coupled with the need for data access control at the cloud services and application layers.

In this chapter, we focus on developing access control models for VO communication, within the

developed ACO architecture.

A virtual object can communicate in various ways. The current common method is topic-

based publish-subscribe scheme (see Section 2.4.3). For instance, a virtual object is called a

device shadow in Amazon Web Service (AWS) IoT. The device shadows service uses reserved

MQTT [53] topics to permit applications and things to get, update, or delete the state information
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for a device [70] by publishing and subscribing to MQTT topics.

The traditional access control models are access control lists (ACLs), capability lists, and role-

based access control (RBAC). Attribute-based access control (ABAC) is receiving current interest

as a more general model that encompasses the benefits of prior traditional models, as well as

brings new features suitable for dynamic and open environments such as the IoT. In this chapter,

we develop access control models for VO communication in two layers: operational models and

administrative models, assuming topic-based publish-subscribe interaction among VOs. Opera-

tional models are developed using (i) ACLs for topics and capabilities for virtual objects, and (ii)

ABAC. It is argued that RBAC is not suitable for this purpose. Administrative models for these two

operational models are developed using (i) ACLs, (ii) RBAC and (iii) ABAC. A use case illustrates

the details of these access control models for VO communication, and their differences. To the

best of our knowledge, this is the first work to address control of VO communication in the IoT.

The rest of this chapter is organized as follows. In Section 4.2, we introduce a use case about

sensing the speed of cars, and flagging those above the limit. In Section 4.3, we propose and dis-

cuss appropriate operational access control models for virtual object communication. Section 4.4

discusses administrative models for this purpose. Assessments of our models with respect to the

IoT security and privacy preserving objectives, which are proposed in [54], are discussed in Sec-

tion 4.5.

4.2 Use Case within ACO Architecture

We employ a use case of sensing speeding cars, illustrated in Figure 4.1, as a running example.

A car is declared to be speeding if two sensors within a specified distance sense the speed to

be over limit. Such cars will be reported along with a picture. Each car is assumed to have an

RFID that enables sensors to identify cars. Objects in physical object layer (sensors and camera)

generally have limited computational power and low storage. Also, issues such as scalability,

heterogeneity, security and privacy, and identification can be handled easier within virtual object

layer than object layer. Thus, we assume that the sensors and camera push collected data (e.g.
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Figure 4.1: Sensing Speeding Cars within ACO Architecture

RFID) to their virtual objects where more powerful computations could happen. For this use case,

we assume communication between sensors can occur only within the virtual object layer, via

publish/subscribe to topics, and they cannot communicate directly with each other.

The physical objects are sensors S1, ..., Sn and a camera C1. Correspondingly, in the virtual

object layer, there is a group of virtual sensors V S1, ..., V Sn, one for each physical sensor, and

one virtual camera V C1 for the physical camera. The physical sensors are linearly arranged along

the highway. Similarly, their virtual sensors communicate in a linear sequence. We have topics

T1, ..., Tn-1, where T1 enables communication from V S1 to V S2, and so on, through Tn-1 which

enables communication from V Sn-1 to V Sn. Finally, topic Tn facilitates communication from

the last virtual sensor V Sn to the virtual camera V C1.

Physical sensors have the capability to sense speed and RFID of cars at the location where the

sensor is located. Moreover, they have local storage and simple computation capability for the

collected data to be refined and pushed to their VOs. The physical camera has the capability to

sense RFID, current location, and take pictures. It has local storage, and local simple computation
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for the collected data to be refined and pushed to VC1. However, if VOs are not connected to phys-

ical objects, the collected data will be kept temporarily in the local memory of physical objects.

Eventually, the refined collected data will be pushed to the VOs and will be removed from local

memory.

The scenario of communication among virtual objects starts with V S1, which publishes a

suspicious RFIDs list of over-limit cars, received from S1, to V S2 through T1. V S2 also receives

a suspicious RFIDs list from S2. V S2 compares these two suspicious RFIDs lists. RFIDs that

occur on both lists are added to a SavePic list located on V S2 as well as pushed to an aggregator,

which is responsible to consolidate all incoming data from VSs and VC1 and push it to storage

in the cloud services layer. RFIDs which occur on only one of the lists, are consolidated in a

suspicious RFIDs list at V S2. Then, V S2 publishes the SavePic list and the suspicious RFIDs

list to the next virtual sensor V S3. Other sensors and virtual sensors perform similar steps. V C1

compares the RFIDs (along with pictures) coming from C1 with RFIDs on the SavePic list. The

matched RFIDs will be pushed, along with the taken pictures to the aggregator. Note that a picture

is taken of over-limit car by the camera C1 and communicated to V C1, but only pictures of cars

that are in the SavePic list are sent to the aggregator and communicated outside the VO layer.

The other pictures are discarded. This shows the privacy benefit of separating the VO layer with

transient information from the cloud services layer with persistent information.

4.3 Operational Access Control for VO Communication

We develop access control models for VO communication in two layers. The operational model

specifies controls regarding which VO to VO communications are authorized via topics. The ad-

ministration of these controls is specified by the administrative models. This separation of oper-

ational and administrative models was first introduced in role-based access control, where opera-

tional models were defined in [26, 64] and administrative models in [63].

In this section we develop two operational models: ACLs and capabilities-based access control,

and attribute-based access control. Publish/subscribe schemes typically employ message brokers
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(MBs) [10] (also called event brokers [23]) that route messages from publisher to subscribers for

topics. After subscribers register (by sending a subscribe request) with a message broker of a topic,

a published message to that topic will be forwarded by the message broker to all subscribers. The

operational authorizations specify which VOs are allowed to publish to which topics, and likewise

which VOs can subscribe to which topics. These authorizations determine the permitted pattern of

communication in the VO layer, and thereby indirectly in the object layer.

The operational access control models address the following questions. Which VOs are allowed

to publish or send a subscription request to a topic’s MB? Which VOs should a topics MB forward

data to? Which MBs should VOs publish to or send a subscription request to? Which MBs should

VOs receive data from? These lead to the following related questions. Where should the publish

and subscribe controls be located? On the topic side, virtual object side, or both?

The operational models recognize two sets of entities: virtual objects (VO) and topics (T), and

a set of rights R={p,s} denoting publish and subscribe respectively. VOs are active entities that

can publish data to topics, and receive data from topics they are subscribed to. Each topic has an

associated MB, which responds to subscribe requests from VOs, accepts data published to the topic

by a VO and forwards this data to the topic’s subscribers. The right for the forward operation is

represented in the singleton set F={Forward}. Note that these entities are very different in nature

from the usual user/subject and resource/object entities in access control models [40, 64].

4.3.1 ACL and Capability Based (ACL-Cap) Operational Model

The ACL-Cap model incorporates ACLs for topics and capability lists (Cap) for VOs, as illustrated

in Figure 4.2. These lists are maintained by administrators, as will be discussed in Section 4.4. The

ACL of a topic comprises a list of VOs, along with a publish or subscribe right for each VO. The

capability list of a VO similarly comprises a list of topics with the publish or subscribe right for

each topic. The capability list informs the VO as to which topics it can publish or subscribe,

obviating the need for additional logic for this purpose. Similarly, the ACL of a topic informs the

topic’s MB as to which VOs can publish or subscribe to it. Since the VOs and topic MBs are fully
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Figure 4.2: The ACL-Cap Model

automated, this dual ACL-Cap approach is more convenient and secure relative to ACL-only or

capability-only approaches. This dual scheme allows unauthorized operations to be denied at the

earliest possible moment, instead of deferring the decisions till later.

A particular VO can publish to topics for which it has a publish capability. The publish opera-

tion will succeed only if that topic’s ACL has a corresponding entry for that VO with the publish

right. The authorization rule for publish is therefore expressed as follows.

Auth-Publish(V O, T ) ≡ (T, p) ∈ Cap(V O) ∧ (V O, p) ∈ ACL(T ) (4.1)

The subscribe operation is more complicated, in that the subscribe relationship needs to be estab-

lished before published data is forwarded and received. This requires a request to subscribe from a

VO to a topic, and an accepting response from the topic’s MB. Recognizing that this is a multi-step

operation, we express the authorization rule for successful completion of subscribe as follows.

Auth-Subscribe(V O, T ) ≡ (T, s) ∈ Cap(V O) ∧ (V O, s) ∈ ACL(T ) (4.2)

A successful subscribe operation adds the topic T to the VO’s subscriber list, and the VO to the

topic’s subscriber list as shown in Figure 4.2. The actual forwarding of published data by a topic’s
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Table 4.1: ACL of Topics

T1 .... Tn-1 Tn
V S1, p .... V Sn-1, p V Sn, p
V S2, s .... V Sn, s V C1, s

Table 4.2: Capability List of V Os

V S1 .... V Sm V C1
T1, p .... Tn, p Tn, s

.... Tn-1, s

MB to a VO is authorized as follows.

Auth-Forward(T, V O) ≡ V O ∈ Subscribers(T ) ∧ T ∈ Subscriptions(V O) (4.3)

Equations 4.1 and 4.2 respectively address the questions: which VOs are allowed to publish or

send a subscription request to a topic’s MB? Equation 4.3 addresses the question as to which VOs

a topic’s MB can forward data to. Note that equation 4.1 can be partially checked at the publishing

VO’s side, thus preventing a rogue VO from indiscriminately attempting to publish to unauthorized

topics (as would be possible in an ACL-only approach).

For the use case defined in Section 4.2, we have V O = {V S1, .., V Sn, V C1} and T =

{T1, .., Tn− 1, Tn}, with the ACLs and capability lists given in Table 4.1 and Table 4.2.

4.3.2 ABAC Operational Model

Next we develop an ABAC operational model, illustrated in Figure 4.3. The entities in this model

are the set VO of virtual objects and the set T of topics with rights R={p,s} and F={Forward}, as

before. We have a set of attributes, VOA for virtual object attributes and TA for topic attributes, as

follows.

V OA = {V O-Publish, V O-Subscribe, V O-Subscriptions, V O-Location}
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TA = {T -Publish, T -Subscribe, T -Subscribers, T -Location}

The T-location and VO-location attributes are atomic valued and give the location of the corre-

sponding topic and VO in appropriate units. The remaining attributes are set-valued. Values

for VO-Publish, VO-Subscribe, and VO-Subscriptions are a subset of the topics T. Values for

T-Publish, T-Subscribe, and T-Subscribers are a subset of the virtual objects VO. The following

authorization rules express the same policy as in Section 4.3.1.

Auth-Publish(V O, T ) ≡ T ∈ V O-Publish(V O) ∧ V O ∈ T -Publish(T ) (4.4)

Auth-Subscribe(V O, T ) ≡ T ∈ V O-Subscribe(V O) ∧ V O ∈ T -Subscribe(T ) (4.5)

Auth-Forward(T, V O) ≡ T ∈ V O-Subscriptions(V O) ∧ V O ∈ T -Subscribers(T ) (4.6)

The attributes VO-Publish, VO-Subscribe, T-Publish and T-Subscribe are assigned by administra-

tors. The VO-Subscriptions and T-Subscribers attributes are assigned as a consequence of estab-

lishing the subscribe relationship as discussed in Section 4.3.1. The T-location and VO-location

attributes are enhancements to the use case in the ABAC model. We assume that VO-Location

is automatically assigned to be the location received from the physical sensor. The T-location at-

tribute is assigned by an administrator. We can conjunctively add the following condition to each

of the three equations above.

T -Location(T ) ≈ V O-Location(V O) (4.7)

This will further constrain the pattern of communication amongst the VOs by taking their location

into account. In particular, if sensors are moved a significant distance the authorized communica-

tion will be disrupted. Small movements will be accommodated due to the approximate matching

in this condition.

Note that a single ABAC authorization rule incorporates topic and virtual object attributes.
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Figure 4.3: ABAC Operational Model

In this respect equations 4.4, 4.5 and 4.6, are respectively similar to equations 4.1, 4.2 and 4.3.

However, ABAC allows incorporation of additional attributes such as in equation 4.7, whereas the

ACL-Cap model is limited to the ACL and Cap lists as the only permitted “attributes.”

4.3.3 RBAC Limitations

In closing this section we discuss some limitations of RBAC in context of IoT VO communica-

tions. RBAC was invented with the notion of assigning users to roles, through which users acquire

permissions primarily to perform operations on target objects. Virtual objects and topics do not

fit this paradigm very cleanly. Virtual objects are active entities in regard to publish and subscribe

operations, while they are targets for forward operations. Similarly, topics are targets with re-

spect to publish and actors with respect to forwarding and accepting subscribe requests. The active

aspects of virtual objects and topics can be accommodated in RBAC by assigning these entities

to mutually exclusive sets of roles. With respect to equations 4.1 and 4.2, the first part of the

equations (i.e., (T, p) ∈ Cap(V O) and (T, s) ∈ Cap(V O)) could be represented by permission

assignment of topic permissions to the VO’s role. The second part (i.e., (V O, p) ∈ ACL(T ) and

(V O, s) ∈ ACL(T )) could similarly be represented by permission assignment of virtual objects

permissions to T’s role. But this splits the equations into separate roles, which must thereby both

be considered when access decisions are made. This consideration of roles of both actor and target

46



requires major extension to conventional RBAC [64].

4.4 Administrative Access Control for VO Communication

In this section, we develop three administrative access control models to control VO communi-

cation, respectively using ACL, RBAC and ABAC approaches. An administrative model is an

essential complement to the operational models described earlier. At the same time the structure of

an administrative model is not tightly coupled with that of the operational model, as will demon-

strate. We use the terms admins to mean users who are authorized to control VO communication,

by adjusting configuration of the operational model. For simplicity, we assume admins of topics

are same as admins of related VOs.

For the ACL-Cap operational model we have two main administrative questions: Who is al-

lowed to add or delete (VO,p) or (VO,s) from ACL of T? Who is allowed to add or delete (T,p) or

(T,s) from Capability list of VO? Slightly different administrative questions arise for the ABAC op-

erational model: Who is allowed to assign or delete values to/from attributes of T? Who is allowed

to assign or delete values to/from attributes of VO?

4.4.1 Administrative ACL Model

In addition to the operational model for our use case, the administrative ACL model introduces a

set of admin users (A) and admin permissions (AP) as follows.

A = {U1, .., Um-1, Um}

AP = {Own,Control}

The administrative ACL model has one ACL for each T and VO as shown in Figure 4.4. Own

and Control are similar in authorizing modifications to ACLs, Capability lists, and administered

attributes of topics and virtual objects as appropriate for the underlying operational model. The

difference between Own and Control is that Own authorizes the admin user to grant Own or Control

over the topic or virtual object to other admin users, while Control does not.
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Figure 4.4: Administrative ACL

Table 4.3: All Admins have Own Permission for all VO and T

T1, VS1 Admins T2, VS2 Admins ..... Tn, VSn Admins VC1 Admins
(U1, Own) (U1, Own) ..... (U1, Own) (U1, Own)
.... .... ... .... .... ... ..... .... .... ... .... .... ...
(Um, Own) (Um, Own) ..... (Um, Own) (Um, Own)

Table 4.4: Only U1 has Own Permission

T1, VS1 Admins T2, VS2 Admins ..... Tn, VSn Admins VC1 Admins
(U1, Own) (U1, Own) ..... (U1, Own) (U1, Own)
(U2, Control) (U2, Control) ..... (U2, Control) (U4, Control)
(U3, Control) (U3, Control) ..... (U3, Control)

A particular admin user U can control T or VO only if (U, ap) is respectively in the ACL of T

or VO, where ap is Own or Control. We express the authorization rule for U to control T or VO as

follow.

Auth-Control(U, T ) ≡ (U, ap) ∈ ACL(T ) (4.8)

Auth-Control(U, V O) ≡ (U, ap) ∈ ACL(V O) (4.9)
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Administrative ACL Model for Operational ACL-Cap

This model is shown in two different configurations in Tables 4.3 and 4.4. In Table 4.3 all admin

users have the Own permission for all topics and virtual objects, while in Table 4.4 only U1 does.

Presumably U1 has granted U2 and U3 control over topics T1 to Tn-1, and virtual sensors VS1 to

VSn. Control over VC1 is granted to admin U4.

Administrative ACL Model for Operational ABAC

The ACL administrative model does not change structurally, but the meaning of Own and Control

are adapted to the ABAC operational model. The difference between Own and Control remains as

discussed above, and only impacts the administrative ACLs. For operational ABAC the Control

permission over a topic or virtual object authorizes the admin to correspondingly modify topic or

virtual object attributes, that are administrable. These are VO-Publish, VO-Subscribe, T-Publish,

T-Subscribe and T-Location in our use case. VO-Subscriptions, T-Subscribers and VO-Location

are automatically assigned and not administered by admins.

In both cases above, the administrative ACL model has one ACL for each topic and each

virtual object. Thus, with large sizes of VO and T, the number of ACL will be larger, and this will

be difficult to maintain.

4.4.2 Administrative RBAC Model

The administrative RBAC model for our use case continues to use the set of admin users A =

{U1, .., Um-1, Um} and admin permissions AP = {Own,Control}, introduced in Section 4.4.1.

Additionally, it introduces a set of administrative roles (AR) and admin permissions set (APS) as

follows.

AR = {AR1, .., ARs}

APS = {(V O × AP ) ∪ (T × AP )}

A particular U can control a topic or virtual object only if U has admin assignment (AA) with
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Figure 4.5: Administrative RBAC

Figure 4.6: Administrative RBAC: Reflects Table 4.3

Figure 4.7: Administrative RBAC: Reflects Table 4.4
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Figure 4.8: Administrative ABAC

some administrative role AR1 where AR1 has admin permission assignment set (APAS) with that

virtual object or topic, as shown in Figure 4.5.

The administrative RBAC model is much easier to maintain than administrative ACL, due to

well-known advantages of RBAC over per-topic and per-VO ACLs. The number of administrative

roles that need to be managed is reduced to one for the configuration of Table 4.3 as shown in

Figure 4.6, and to three for the configuration of Table 4.4 as shown in Figure 4.7. These are

constants numbers as opposed to the linear increase in ACLs with increase in topics and virtual

objects.

4.4.3 Administrative ABAC Model

The administrative ABAC model for our use case continues to use the set of admin users A =

{U1, .., Um-1, Um} and admin permissions AP = {Own,Control}, introduced in Section 4.4.1.

It also introduces administrative attributes for topics (TAA), VOs (VOAA), and users (UAA), as

follows.
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TAA = {T -Location, T -Department}

V OAA = {V O-Type, V O-Location, V O-Department}

UAA = {UA-Type, UA-Location, UA-Department}

Note that these reuse the operational attribute introduced in the operational ABAC model of Sec-

tion 4.3.2 for Location, and add additional administrative attributes Type and Department. These

administrative attributes are atomic valued. The range of the Type and Department attributes are

some small number of enumerated items in each case. Figure 4.8 shows TAA, VOAA, and UAA

being used to authorize AP for A. The interpretation of the Own and Control permissions for the

two operational models is as discussed in Section 4.4.1.

The authorization to use the Control permission with respect to virtual objects or topics is

specified as follows.

Auth-Control(U, V O) ≡

(UA-Type(U) = Own ∨ UA-Type(U) = Control)∧

UA-Department(U) = V O-Department(V O)∧

(V O-type = sensor ∨ V O-type = camera)∧

UA-location ≈ V O-Location(V O)

Auth-Control(U, T ) ≡

(UA-Type(U) = Own ∨ U -Type(U) = Control)∧

UA-Department(U) = T -Department(T )∧

UA-location = T -Location(T )

These representative equations provide the Control permission to a user who has Own or

Control type for a VO if they are in the same Department and approximate Location, provided the

VO is of type sensor or camera. The Control permission to a user who has Own or Control type

for a topic T is provided if they are in the same Department and exact Location (recall Location

of a topic is an administered attribute), provided the VO is of type sensor or camera. In ABAC

these rules can be easily modified or refined, e.g., we could have separate rules for sensors and
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cameras. ABAC is flexible, scalable and adaptable because it abstracts identity, role, and resources

information of ACL and RBAC approaches into VO, topic and user attributes. Also, collected

data (e.g. VO-Location) can be used as attributes values, which collaborate with other attributes to

make a decision.

4.5 Assessments With Respect to IoT Security and Privacy Objectives

Ouaddah et al [54] discuss security and privacy requirements for several IoT application domains,

and classify these into six categories: privacy, technological constraints, social and economic as-

pects of the IoT, confidentiality and integrity, reliability and availability, and usability. Each cate-

gory has various objectives. In the following, we will assess these objectives with respect to our

ACO architecture, access control models, and our use case.

The privacy of users in our ACO architecture and access control models is generally main-

tained. The VO layer collects data from objects, so no third parties (such as other virtual objects)

can get these data without rights (publish, subscribe) that are managed by admin (admin-driven

permissions [54]). Once a right is obtained, VOs can share their data with each other without any

intervention (decentralization [54]) or observation by a third party (a user, the Cloud, etc). Our use

case identifies over-speed cars and tracks them using RFIDs (pseudonymity [54]), and the collected

data are kept in virtual object layer until a decision is made. When a speeding decision is made,

pictures of the cars (the cars’ license plates are disclosed) are persistently saved along with their

RFIDs and shared with the Cloud service layer. Otherwise they are discarded (privacy). Moreover,

our ACO architecture helps users to control their collected data by keeping their data in VO layer

or pushing anonymous sub-data to the Cloud service layer. Furthermore, access control models

help users to control their own data by setting rights for VO communication (user-driven [54]).

However, in our use case, the driver of a car has no control over the collected data about their car

speed. We also needed to link the specific actions of the same car to track their speed, so the RFID

is maintained and a picture is taken if needed.

IoT area has significant technological constraints. Our ACO architecture allows pervasive het-
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erogeneous objects (sensors, camera, etc). Once they connect with their VOs, those VOs can com-

municate through the publish/subscribe scheme despite their heterogeneity. Our access control

models for VO communication achieve most of the complex computation within the VO layer, and

the physical objects layer is typically collecting data (sensors) and doing very simple computations

(if a car is over the speed limit, then push its RFID to VSj).

Our ACO architecture is designed to allow for Cloud collaboration among different organi-

zations. Further, communication among VOs within different organizations is possible using our

access control models. For example, collaboration among the ACL of topics and the capability

list of VOs models can support interoperability and cooperation by communicating directly (pub-

lish to current Cap(VOs), and accepting publish commands from current ACL(T)). In addition, by

using ABAC, attributes of VO and T can be shared among the Cloud service layer and decisions

made. Moreover, ABAC supports making decisions by using assigned attributes and the surround-

ing contextual attributes (sensor location, time, etc.) about an object, the environment, or a user

(i.e., context awareness [54]) .

The ABAC operational model has a finer level of granularity than the ACL-Cap model, where

the specification of the access control rules has more flexibility and incorporates more information

about objects, users, and the environment. A VO’s access to a topic can be easily revoked by

deleting the VO from the ACL of a topic T, a topic T from the capability list of a VO, a VO from

T-Publish/T-Subscribe, or a VO from VO-Publish/VO-Subscribe. Finally, admin users with their

own permission can grant or delegate their granted permission to other users, and admin users with

their own permission can revoke the granted or delegated permission to other users.

Once a right r is granted to VO or T, an access control decision is made regardless of the

connectivity of resource owner (i.e., offline mode [54]). The availability time to publish/subscribe

to T is ready once ACL of T is checked. That might take little bit more time with ABAC since both

of VO and T attributes need to be checked.

The ACL of T and the capability list of VO is easily managed and modified by authorized

users. However, because of the need of context awareness in access control decisions, ABAC
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facilitates managing access control authorization (Auth-Publish, Auth-Subscribe) by combining

various attributes that are related to an object (e.g. Location), the environment (e.g. Time), or the

user (e.g. Department).
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Chapter 5: ACCESS CONTROL MODEL FOR VIRTUAL OBJECTS

(SHADOWS) COMMUNICATION FOR AWS INTERNET OF THINGS

Acknowledgment: The materials in this chapter are published in the following venue [3]

• Asma Alshehri, James Benson, Farhan Patwa, and Ravi Sandhu. Access control model for

virtual objects (shadows) communication for AWS internet of things. In Proceedings of the

Eighth ACM on Conference on Data and Application Security and Privacy. ACM, 2018.

This chapter reconciles the academic access control models that we proposed in chapter 4

with the AWS IoT that is considered as one of the major commercial cloud-IoT platforms. We first

develop an access control model for virtual objects communication for AWS IoT. Then, we discuss

issues within AWS IoT and possible enhancements.

5.1 Motivation and Scope

The Internet of Things (IoT) raises new security challenges, which require significant revisions

and enhancements of existing security solutions, including access control systems. In chapter 3

we developed the access-control oriented architecture (ACO) [4] for cloud-enabled IoT, which

includes four layers: an object layer, a virtual object (VO) layer, a cloud services layer, and an

application layer. The ACO recognizes the need for communication control within each layer

and across adjacent layers, as well as the need for data access control at the cloud services and

application layers. Multiple and diverse access control models are required at various points in this

architecture, which must collectively enforce access control policies reflecting the complexity of

cloud-enabled IoT.

Also in Chapter 4, a set of access control models for VO communications has been proposed

and discussed, referred to as ACO-IoT-ACMsVO. These models are developed in two layers: op-

erational models and administrative models. The ACO-IoT-ACMsVO models are illustrated by

the use case of sensing speeding cars as shown in Figure 4.1, which is simplified as shown in
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Figure 5.1: The Sensing Speeding Cars Use Case within ACO Architecture [6]

Figure 5.2: The Publish/Subscribe Topic-Based Scheme in the ACO-IoT-ACMsVO

Figure 5.1. This use case will be used in this chapter to implement within AWS IoT.

The ACO-IoT-ACMsVO models are developed utilizing publish/subscribe communication in-

teraction scheme.This scheme is appropriate for large-scale distributed interactions such as the IoT.

The basic implementation style of publish/subscribe paradigm is topic-based scheme. The topic-

based scheme is comparable to the idea of groups, where producers (publishers) publish data to a

topic and consumers (subscribers) become members of a topic (a group) [10,23]. Figure 5.2 shows

the general idea of publish/subscribe topic-based scheme that is used in ACO-IoT-ACMsVO.

The principal goal of this chapter is to reconcile the afore-mentioned academic models with

a major commercial cloud-IoT platform, viz., AWS IoT. While AWS IoT has a notion of digital

shadows closely analogous to VOs, it lacks explicit capability for VO communication and thereby
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for VO communication control. Thus, there is a significant mismatch between AWS IoT and these

academic models. Nevertheless, as we will show, it is possible to use AWS IoT mechanisms to

effectively realize and control VO communications. This demonstrates on one hand that academic

models developed independent of AWS IoT can be enforced using this commercially significant

platform. It also suggests enhancements to AWS IoT that would be beneficial to facilitate such

enforcement. We believe that in the rapidly developing ecosystems of cloud, IoT and their in-

tersection, it is crucial to place academic work within major industry developments. This is the

primary motivation for this chapter.

The rest of the chapter is organized as follows. Within AWS IoT, we develop an access control

model for virtual object communication (AWS-IoT-ACMVO) in Section 5.2. Section 5.3 discusses

the use case of ACO-IoT-ACMsVO within the AWS-IoT-ACMVO model. Section 5.4 discusses

proof-of-concept implementations of the use case in two scenarios in AWS IoT platform. Selected

performance aspects of our implementation are described in Section 5.5. A discussion of some

issues of AWS IoT and possible enhancements are explained in Section 5.6.

5.2 The AWS-IoT-ACMVO Model for AWS IoT Shadows Communication

In this section, based on our extensive exploration of AWS IoT platform, its documentation, and

our implemented use cases, we propose an access control model for virtual objects (shadows) com-

munication called AWS-IoT-ACMVO as an abstracted view of AWS IoT capabilities. Figure 5.3

shows the major components of this model, viz., certificates, AWS IoT policies, virtual objects

(device shadows), Message Queuing Telemetry Transport (MQTT) topics, and rules engine and its

actions. The details of their functionalities are discussed below.

AWS IoT uses X.509 certificates as an identity credential for devices authentication [12]. Cer-

tificates can be either an AWS IoT generated certificate or a certificate signed by a AWS IoT

registered external certification authority. Generally, one certificate can be given to many devices,

but it is recommended that each device has a unique certificate to enable fine-grained device man-

agement. Figure 5.3 shows that each certificate can be given to more than one device, and each
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Figure 5.3: The Components of AWS-IoT-ACMVO

device can have multiple certificates (the arrow with double end means a multiplicity). However,

every time a device connects it can only activate one certificate.

Once a certificate is generated, there are two AWS IoT entities that need to be attached to

the certificate in order to authenticate and authorize AWS IoT devices, which desire to commu-

nicate with virtual objects (device shadows), viz., AWS IoT policy and virtual objects. An

AWS IoT policy is a JSON document that is attached to a certificate for authorization purpose.

It comprises one or more policy statements, each of which specifies effect, action, resources,

and optional condition. An action is an operation that can be granted or denied to a resource

as determined by the effect value. Actions can be MQTT policy actions or thing shadow policy ac-

tions. The MQTT policy actions are the operations that deal with connecting, sending, or receiving

data, which are iot:Connect, iot:Publish, iot:Subscribe, and iot:Receive. On the other hand, thing

shadow policy actions deal with permissions to handle virtual objects (device shadows), which are

iot:DeleteThingShadow, iot:GetThingShadow, and iot:UpdateThingShadow. Figure 5.3 shows that

each AWS IoT policy can be attached to more than one certificate, and each certificate can attach

multiple AWS IoT policies. Generally, the AWS IoT policy is attached to a certificate to authorize

any kind of actions (e.g. iot:Publish and iot:GetThingShadow) to devices that hold that certificate
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(and its private key).

Virtual objects (device shadows) also need to be attached to a certificate as a resource that

a device is fully or partially authorized to access. A virtual object can be given more than one

certificate, and a certificate can attach to more than one device. Figure 5.3 shows the many-to-many

relationship between certificates and virtual objects. A virtual object is also a JSON document that

stores information about the current state of a connected device and the desired future state of the

connected device (there is no recent or historical state). One of the benefits of the device shadow

is that its information can be used to set or get the state of its device, even if the device is not

connected. In general, a device that holds a certificate with attached policies and virtual objects

has the rights to communicate and access to the attached virtual objects (one virtual object at each

connection) based on the attached policies.

In AWS IoT, applications cannot directly update or retrieve data of devices. Virtual objects

in AWS work as an intermediate point of communication among applications and physical de-

vices. The only way for applications or devices to interact with a virtual object is to communi-

cate with its MQTT topics. In other words, MQTT topics of a virtual object allow applications

and devices to get, update, or delete the state information of the virtual object (device shadow)

by publishing or subscribing to its MQTT topics. The name of each MQTT topic begin with

$aws/things/thingName/shadow/#, where the thingName is the name of a virtual object, and

the symbol # could be one of the thingName MQTT topics that can be used to interact with

the thingName. There are reserved thingName MQTT topics for each virtual object that can be

used to publish or subscribe to the virtual object. In order to send a request to a thingName (a

virtual object), we only can use /update, /get, or /delete as thingName MQTT topics of that thing-

Name. While /update/accepted, /update/reject, /update/delta, /update/documents, /get/accepted,

/get/rejected, /delete/accepted, and /delete/rejected MQTT topics are used by the thingName itself

to publish an acknowledgement about accepting or rejecting the received request. Generally, AWS

IoT service generates reserved MQTT topics for each created virtual object. The reserved MQTT

topics is the only way to communicate with the created virtual object. Figure 5.3 shows that each
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virtual object has specific reserved MQTT topics, and each reserved MQTT topic is only related

to one virtual object. Moreover, each device can communicate with more than one MQTT topic as

long as it has an authorized certificate, and each MQTT topic can be used by more than one device

if devices are authorized.

A powerful mechanism in AWS IoT is that a message sent to an MQTT topic can be recognized

and analyzed by a rule. Rules provide processing for the arrived messages to MQTT topics and

enable interactions with various AWS services. A rule consists of a rule name, optional description,

SQL statement, SQL version, and one or more actions. The SQL statement is used to filter received

messages to MQTT topics, and then the rule engine forwards it to AWS services or republishes it

to other MQTT topics by using the action field specified in the rule. There are fixed AWS actions

that can be selected, such as inserting a message into a DynamoDB table, invoking a Lambda

function, and republishing messages to AWS IoT topics. Thus, rules that are attached to MQTT

topics provide ways for virtual objects to interact with AWS services or republish the received

messages to other MQTT topics (reserved or unreserved). Figure 5.3 shows that each rule can be

triggered by more than one topic, and each topic can trigger more than one rule. Also, when a rule

is triggered, one or multiple actions can be executed.

When rules forward the published messages to another AWS service, such as AWS Lambda,

the authorization to access the other service and the actions of other service can be controlled via

AWS identity and access management (IAM) role. Each IAM role is attached with at least one

policy that grants permissions to access resources specified in the action of the rule or to control

actions toward the received data. For example, when an Amazon SNS rule is created, an IAM role

will be attached to that SNS rule to authorize access to SNS resources. The attached role will have

policies that allow actions (e.g. sns:Publish) toward specific resources in Amazon SNS. Similarly,

when a lambda rule is created, an IAM role will be attached to the lambda function. This attached

IAM role will have policies that authorize actions (e.g. iot:Publish, iot:GetThingShadow) toward

specific resources in AWS Lambda. Thus, we can see that IAM role and its attached policies are a

part of the AWS IoT rule definition to control actions. Figure 5.3 shows that each action of a rule
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Figure 5.4: The Rules Engine as a Communication Channel in AWS-IoT-ACMVO

can only attach one IAM role, but each IAM role can be used by many rule actions. Also, one IAM

role can attach many policies, and one policy can be attached to many IAM roles.

5.3 Issues in enforcing ACO-IoT-ACMsVO within AWS-IoT-ACMVO

AWS IoT does not support direct communication among VOs, because a VO is only allowed to

communicate directly with its reserved topics. The AWS-IoT-ACMVO model is one way to effect

VOs communication via rules within AWS IoT. AWS-IoT-ACMVO keeps the transient data within

the virtual object layer without persistent storage, while only data about actual speeding cars is

propagated to the higher layers. Thus, the privacy of data can be preserved. All components of

VOs communication that contribute in this communication are shown in Figure 5.5. Figure 5.4

shows how the rules engine of AWS IoT serves as a communication channel between VOs in the

AWS-IoT-ACMVO model. The ACO-IoT-ACMsVO academic model assumes the communication

regime shown in Figure 5.2 where the communication channel between two VOs is a shared topic

to which VO1 publishes and VO2 subscribes. The rules engine enables a similar effect to be

achieved in AWS IoT as shown in Figure 5.4.

The control points to authorize VOs communication via topics in ACO-IoT-ACMsVO is placed

on both VO side and topic (T) side [6]. For example, in case of ACL-Cap operational model, a
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Figure 5.5: The Sensing Speeding Cars Use Case within AWS-IoT-ACMVO

VO can have a right to publish to a topic only if the topic in the capability list of the VO and the

VO is in the access control list of T. In case of the ABAC operational model, a publish permission

will be authorized if the topic is within VO-Publish attribute values and the VO is within T-Publish

attribute values. The subscription right is similarly authorized on both sides.

In case of AWS-IoT-ACMVO, the control point to authorize reserved topics of a VO to commu-

nicate with other reserved topics of another VO is placed in rules engine. For example, when data

arrives at reserved a topic of a VO, a lambda rule will trigger a lambda function as an action if the

Select Clause and Where Clause in the SQL statement of the lambda rule evaluate to true. When

the lambda function is triggered, an attached IAM role with lambda function will comply with a

coupled policy or policies to authorize AWS-IoT to access to the lambda function and authorize the

lambda function to execute actions with the received data. IAM role policy could authorize lambda

function to forward data to other reserved/unreserved topics. Thus, other topics will receive data

as long as it is in an appropriate format without checking where the data came from or rejecting

the received data, and as a result, the received data will be forwarded to subscribers. So, a question

like “which resources should a topic receives data from?” is only controlled via IAM role that is
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attached within an action of a rule, and topics have no control over what they receive.

We investigated applying the use case of sensing speeding cars, which is employed in ACO-

IoT-ACMsVO, within AWS-IoT-ACMVO. But as we discussed above, the communication style,

access control points, access control models are not precisely alike. Although, AWSnIoT does not

support direct VOs communication, we were able to develop AWS-IoT-ACMVO that effectively

allows VOs communication. The details of configuration, scenario, and authorization policy are

discussed in the following section.

5.4 A Use Case: Sensing Speeding Cars within AWS-IoT-ACMVO

In this section, we present two scenarios of the use case of sensing cars speed. The two scenarios

will have number of sensors and a camera in the physical layer. All devices on the physical layer

will push collected data to their virtual objects (shadows). In our scenarios, we focus on the

communication among virtual objects and how this communication can be controlled.

5.4.1 Sensing the Speed of One Car

We will discuss the configuration and the scenario of our simple use case as follows.

Setup and Configuration

In this simple scenario, we will have two physical sensors and one physical camera each with one

virtual object connected to it. Figure 5.6 shows the connected devices, virtual objects (shadows),

certificates, AWS IoT policy, rules, actions and their IAM roles, and AWS services.

First, we create one virtual object for each physical object using AWS IoT management console

and attach one X.509 certificate for each virtual object. For each certificate, we attached an AWS

IoT policy. Certificates are copied into their corresponding physical objects to allow authentica-

tion and authorization of physical objects when they communicate with the corresponding virtual

objects. In other words, the attached AWS IoT policy authorizes specific actions (connect and

publish) for physical objects. When certificates are given to the corresponding physical objects,
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they are accompanied by the private key of the certificate and an AWS root CA certificate.

Figure 5.6: A Simple Use Case of Sensing the Speed of One Car

We simulated sensors and camera physical objects using AWS SDK for JavaScript (Node.js).

There is an attached rule for each MQTT update topic $aws/things/Sensori/shadow/update

that triggers a Lambda function. Lambda functions are responsible about republishing the in-

coming reported data that arrived to a virtual object (V irtual Sensori or V irtual Camera)

from its corresponding physical object (Sensori or Camera) to the next virtual object (V irtual

Sensor(i+1) or V irtual Camera) as shown in Figure 5.6. Also, each Lambda function is attached

with IAM role that authorizes AWS IoT to access AWS and AWS IoT resources and services. The

IAM role also controls Lambda function operations, such as republishing data to another topic or

getting the current state of a shadow.
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Senario

Sensor1 sends RFID and Speed of the over speeding car as a reported message to V irtual

Sensor1 (V S1) by publishing to Sensor1 MQTT update topic $aws/things/Sensor1/shadow/update.

Rule1 that is attached with the Sensor1 MQTT update topic will trigger Lambda1function every

time data arrived to MQTT update topic of V S1. Lambda1 function republishes the arrived data

to V irtual Sensor2 (V S2) with a desired tag. Figure 5.6 shows that the reported RFID and

Speed to V S1 is republished to V S2 as desired state by Lambda1 function.

Sensor2 also sends RFID and Speed of the over speeding car as a reported message to V S2 by

publishing to the following MQTT update topic: $aws/things/Sensor2/shadow/update. Rule2

is going to trigger Lambda2 function every time data arrived to MQTT update topic of V S2.

Lambda2 function check if the coming data is with reported tag, it compares the saved desired

RFID with the coming reported RFID from Sensor2. If the two RFIDs are matched, Lambda2

function combines the two speeds and one RFID and publish it with a desired tag to the V irtual

Camera (V C1). Figure 5.6 shows that the reported RFID matches the desired RFID in V irtual

Sensor2. Thus, V C1 will receive from Lambda2 function two speeds that are reported from

Sensor1 and Sensor2 for the same RFID.

Camera also sends RFIDs and pictures (Pic) of the passed cars as a reported message to

V irtual Camera by publishing to MQTT update topic $aws/things/Camera/shadow/update.

Rule3 is going to trigger Lambda3 function every time data arrived to MQTT update topic of

V C1. Lambda3 function check if the coming data is with a reported tag, it compares the saved

coming desired RFID from Sensor2 with the coming reported RFID from Camera. If the two

RFIDs are matched, Lambda3 function combines the RFID, Speeds, and Pic and store them to

the Amazon DynamoDB. Figure 5.6 shows that the reported RFID matches the desired RFID in

V C1. Thus, the combined RFID, Speeds, and Pic will be stored in in the Amazon DynamoDB.
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Figure 5.7: S2-P that is Attached to S2-Cert

Figure 5.8: Role2 Policy that is Attached to Role2

Authorization policy

There is an AWS IoT policy attached with each certificate to authorize specific actions for physical

objects. For example, Sensor1 are only allowed to connect and publish to V S1 in order to send the

collected RFID and Speed of the over speed cars. Thus, the AWS IoT S1-P and V S1 are attached

with S1-Cert which is copied to Sensor1. The policy states that connect and publish actions are

allowed to the specified resources, which is V S1 (the shadow of Sensor1). Similarly, the AWS

IoT S2-P in Figure 5.7 and V S2 will be attached to S2-Cert, which is copied to Sensor2, and the
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AWS IoT C1-P and V C1 will be attached to C1-Cert, which is copied to Camera1. AWS IoT

defines policy variables, which can be used in AWS IoT policies within the resource or condition

block. The basic variable IoT : ClientID can be used to generate a policy that can be attached

to all certificates. However, a certificate is not coupled with an ID of physical sensor that should

connect and publish to the attached shadows, so malicious sensor could change their ID to connect

and publish to any other MQTT update topic. Therefore, we preferred to specify and hard-coded

one different policy for each certificate as shown in Figure 5.6, and each AWS IoT policy is similar

to S2-P shown in Figure 5.7 but with different sensor names.

Also, there is an IAM role attached to each Lambda function to authorize it accessing to AWS

services and AWS IoT resources. For example, Role1 is attached to Lambda1 to authorize it

publishing to the update topic of V S2. Also, Role2 is attached to Lambda2 to authorize it getting

the desired state of V S2 and publishing to the MQTT update topic of V C1. Figure 5.8 shows the

IAM Role2 Policy that is attached to Role2. Also, Role3 is attached to Lambda3 to authorize it

getting the desired state of V C1 and publishing to Amazon DynamoDB.

5.4.2 Sensing the Speed of Multiple Cars

The previous simple use case introduces the basic idea of implementing and controlling the virtual

object communication within AWS IoT. However, in reality there is a need to track multiple cars,

where different cars pass a sensor at a time. A VO (shadow) in AWS IoT has different reserved

topics that are used by the VO to subscribe to them. So, any time a sensor publishes a new list of

RFIDs/Speeds, the old list is deleted and a new one is saved. However, our use case with multiple

cars needs to keep track of the historical data (old and new RFIDs).

In this use case, for every VO corresponding to a physical object, we propose to have another

relative VO that works as storage of historical data. The only way to push or get data from the

VO storage is by using a lambda function that is triggered by publishing data from a sensor to the

MQTT update topic of the corresponding VO. Figure 5.9 shows sensors (S1, S2, ..., Sn, C1) and

their corresponding virtual objects (V S1, V S2, ..., V Sn, V C1) and the storage for each of them
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Figure 5.9: A Use Case of Sensing the Speed of Multiple Cars
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(V S1S, V S2S, ..., V SnS, V C1S).

Setup and Configuration

As in previous simple use case, we create one virtual object and one virtual object storage for

our physical objects and attach one X.509 certificate for each virtual object. Certificates that are

attached with AWS IoT policies are copied into their corresponding physical objects. The AWS

IoT policy states that sensors and the Camera are only allowed to connect and publish to the

corresponding VO (similar to the mentioned policy in Figure 5.7).

We simulated Sensors and the Camera using AWS SDK for JavaScript (Node.js). Lambda

functions are triggered by rules that are attached with MQTT update topics of VOs. For example,

Lambda1 is triggered by rule1 that is attached to MQTT update topic of VS1. In general, Lambda

functions are responsible about the complex computations, such as getting the stored data, compar-

ing and consolidating the coming and the stored data, and republishing data to the current storage

or next VO. Figure 5.9 describes the functionality of each lambda function.

Senario

Sensor1 sends a list of RFIDs/Speeds of over speeding cars as a reported message to V S1 by

publishing to V S1 MQTT update topic. Rule1 triggers Lambda1 function when a published re-

quest arrived to MQTT update topic. Lambda1 function will consider the reported RFIDs/Speeds

as a suspicious list, that will be handled as described in Figure 5.9.

Sensor2, ..., Sensori, .., Sensorn also send a list of RFIDs/Speeds of over speeding cars as

a reported message to their corresponding VO by publishing to V Oi MQTT update topic, where

2 ≤ i ≤ n. The reported RFIDs/Speeds from physical objects is considered as a suspicious list

(stored in V SiS under reported tag) beside the suspicious list that is coming from a previous VO

(stored in V SiS under desired tag with RFID1). The matched RFIDs in both of the suspicious

lists will be stored as SavePic list (stored in V SiS under desired tag with RFID2). Rulei triggers

Lambdai function when a published request arrived to MQTT update topic of V Si. Lambdai

70



Figure 5.10: Role5 Policy that is attached to Lambda5

function will deal with the arrived data as suspicious lists and handle it to generate the SavePic

list as described in Figure 5.9. Note that Lambda3 to Lambda(n−1) will do the same computations.

Camera sends RFIDs and pictures (Pic) of the passed cars as a reported message to V irtual

Camera (V C1) by publishing to MQTT update topic of V C1. Rule(n+1) triggers Lambda(n+1)

function when a published request arrived to V C1 MQTT update topic. Lambda(n+1) function

will deal with the coming data as descried in Figure 5.9.

Authorization policy

As in previous simple use case, we will have an AWS IoT Policy that is attached with S1-Cert, ..,

Sn-Cert, C1-Cert. The policy state that physical objects can only connect to their corresponding

VO and publish to MQTT update topic of the VO. Figure 5.7 is an example of an attached AWS

IoT policy that authorizes physical objects to connect and publish.

Also, the IAM roles are attached to Lambda functions. For example, Role1 is attached to

Lambda1 to authorize it publishing to the update topic of V S2. Role2 is attached to Lambda2

to authorize it getting the data of the storage of V S2 and publishing only to the update topic of

the V S2S and V S3. Role(n+1) is attached to Lambda(n+1) to authorize it getting the data of the

storage of V C1 and publishing only to its storage and then to the Amazon DynamoDB. Figure 5.10
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shows the Role5 Policy of the IAM Role5 that is attached to Lambda5 to authorize it getting the

data that is saved in the storage of V S5 (n = 5 in our implementation) and publishing only to the

update topic of the V S5S and to the update topic of V C1.

5.5 Performance

Our scenario propagates the Suspicious list published by any sensor until the last virtual sen-

sor, and it propagates the SavePic list from the moment of generation until the camera. The first

possible generated Suspicious list starts from Sensor1, and the first possible SavePic list starts

when Sensor2 publishes similar Suspicious list to the published Suspicious list by Sensor1, so

the SavePic list will be generated by lambda2 function that is triggered when Sensor2 publishes

to its virtual object. In this section, we calculate the time of propagating the Suspicious and the

SavePic list to their final destination.

The use case with multiple sensors and cars is employed in computing the propagation time. we

set the number of sensors to five. We used two AWS SDKs for JavaScript (Node.js) to subscribe to

V irtual Sensor5 Storage (V S5S) and V irtual Camera1 Storage (V C1S), so we can get an ac-

knowledgement whenever the Suspicious and the SavePic list are reached. A bash script is written

to run Sensor1, start the timer, run V S5S, and end the timer whenever we get an acknowledge-

ment from V S5S. Similarly, the bash script will run Sensor2 (with smillar RFIDs of Sensor1),

start the timer, run V C1S, and end the timer whenever we get an acknowledgement from V C1S.

Thus, we were able to calculate the propagation time of the Suspicious and the SavePic list to their

final destination.

We run Sensor1 that publish the Suspicious list with {1, 10, 20, 30, 40} RFIDS. For the Sus-

picious list with one RFID, we calculate the propagation average time of 10 times run. Thus, the

propagation time of the Suspicious list with one RFID from S1 until V S5S in Figure 5.11, which

is 5915 millisecond, is the average of 10 times run. Similarly, the propagation time of the Suspi-

cious list with 10, 20, 30, 40 RFIDs from S1 until V S5S, which is 6335, 7131, 7519, and 8109

millisecond, is also the average of 10 times run. However, we get rid of outliers, which is the time
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values that exceed 10000 or less than 3000 millisecond.
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Figure 5.11: Propagation Time of Suspicious List from S1 until V S5S
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Figure 5.12: Propagation Time of SavePic List from S2 until V C1S

After a Suspicious list is published by S1 and an acknowledgement is received from V S5S,

Sensor2 is also run to publish a Suspicious list, similar to the Suspicious list that is published by

S1, with {1, 10, 20, 30, 40}RFIDS. The propagation time of the SavePic list with {1, 10, 20, 30, 40}

RFID from S2 until V C1S in Figure 5.12, which is 7774, 8100 , 8405, 8694 , 8851 millisecond, is
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the average of 10 times run. However, we get rid off outliers, which is the time values that exceed

14000 or less than 4000 millisecond.

The algorithms of our Lambda functions that we used within our use case in Figure 5.9 shows

more computation and steps when a Lambda function gets the Suspicious list than when a Lambda

function gets the SavePic list. However, our results in Figure 5.11 and 5.12 show that the prop-

agation time of the Suspicious lists are less than the propagation time of the SavePic lists. This

difference is because of the larger payload of the SavePic list, which has two speeds for each one

RFID, than the Suspicious list, which has only one speed for each RFID.

5.6 Discussion

AWS IoT does not have full capability to implement our use case that we employed in [6]. First,

virtual objects (shadows) in AWS IoT cannot communicate directly to each other. Since virtual

objects can only subscribe to their reserved topics update, get, and delete. So, they receive data

through their reserved topics. Also, virtual objects can publish to their reserved topics only when-

ever they receive data. As a result, publishing and subscribing of virtual objects is only to their

reserved topics and direct publishing to unreserved topics or irrelevant topics is not applicable.

There are several indirect ways to allow virtual objects communication in AWS IoT. One way

to allow two virtual objects to communicate is to attach a rule with the update topic of first virtual

object that triggers a republish action to the second virtual object update topic. The Republish

action can be also used to forward data to AWS services as shown in Figure 5.13. Another way

is to attach a rule with a topic of first virtual object that trigger a lambda function, which can do

complex computation, such as publishing data, getting data, and comparing data. Thus, lambda

function can republish the received data to another topic, which could be the update topic of the

second virtual object. We employed the second way in our use cases.

In addition to indirect communication among virtual objects, virtual objects in AWS IoT cannot

keep track of old data. For example, if a new suspicious list is published to a virtual object, the

current suspicious list will be deleted and the new one will be saved. However, our use case needs
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Figure 5.13: A Different Way of VOs Communication and Data Computation

to combine the coming suspicious list from previous sensor and the current saved one. Since the

process of deleting and saving list is very fast, triggering a lambda function that get the current

suspicious list from virtual object and then combine it with the coming one did not work. Thus,

virtual objects in AWS IoT cannot save old data.

There are several ways to keep track of historical data in AWS IoT. One way to keep track of

historical data of a virtual object is to have another relative virtual object that works as storage. The

only way to get or publish data to the relative virtual object is by allowing one lambda function to

publish and get data from it. This lambda function is triggered whenever data is published to update

topic of the virtual object. Thus, the coming suspicious list arrived to the update topic of a virtual

and the current suspicious list that is saved in the virtual object can be combined and republished

by the lambda function. We used this way in our use case to keep transit data within the virtual

object layer, so the privacy of data can be preserved. Another way to reach the historical data of

a virtual object is to trigger a republish action to AWS DynamoDB whenever data is published

to update topic of the virtual object. Thus, authorized virtual objects can get the historical data
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from AWS DynamoDB as needed. However, our use case tends to keep the suspicious lists within

the virtual object until at least two sensors report the speed of a car to be over limit. Figure 5.13

shows the way of republishing suspicious lists, which come from S1 and S2, to AWS DynamoDB

in the cloud service layer. Then, lambda1 is authorized to get all suspicious lists and check if there

are duplicated RFIDs within the saved suspicious lists and also within the suspicious list coming

from the camera. If so, this RFID is declared to be an over-limit car, and it is reported along with

consolidate information from all suspicious lists (speed, picture).

Another issue with the AWS IoT is that virtual objects cannot do complex computation on the

data they receive. They only save the recent published desired or reported data. Such a computation

in our use case cannot be implemented within only AWS IoT. Thus, since we need the transit data to

be only within AWS IoT, we used AWS Lambda service to support doing the needed computation.

Another way to do that is to send data to DynamoDB and allow an application or a third party to

do the needed computation.

Moreover, in our use case, we could have up to n sensors. Lambda3 to Lambda(n−1) functions

are repetitive functions that can be triggered by the update topic of V S3 to V S(n−1). We can get rid

of this repetition If we have only one Lambda that accept passing the name of the published sensor.

However, triggering same lambda is not working within our use case, because to our knowledge

there is no way to pass the name of the published sensor to a lambda function. Thus, repeated

copies of Lambda(n−1) will be increased by increasing the number of sensors, which is n.
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Chapter 6: CONCLUSION

The following sections summarize the contribution of this dissertation and discuss some future re-

search directions that can be further studied.

6.1 Summary

In this dissertation, we take a first step toward our eventual goal of evolving an authoritative family

of access control models for cloud-enabled Internet of things. First, we developed an IoT archi-

tecture which is divided into four layers: the object layer, the virtual object layer, the cloud layer,

and the application layer. This architecture will be our reference to build access control models

for cloud-enabled Internet of things. We discussed illustrative examples that highlight the needed

access control models for IoT. From our examples, we discussed the research agenda that could be

studied.

We also used our ACO architecture to propose the ACL-Cap and ABAC operational models to

control virtual object communication. We noted the unsuitability of conventional RBAC for this

purpose. We illustrated the operational models by means of a use case involving sensors, camera

and speeding cars. We further developed ACL, RBAC, and ABAC administrative access control

models in context of this use case, and identified the advantages offered by progressing to more

sophisticated models in this regard. Finally, assessment of security and privacy objectives for IoT,

as identifed by Ouaddah et al [54], are discussed in context of our ACO architecture, access control

models, and our use case.

Finally, we studied AWS IoT and developed the access control model for virtual objects (shad-

ows) communication in AWS IoT (AWS-IoT-ACMVO). We used the AWS-IoT-ACMVO to im-

plement two scenarios of the use case that is employed in ACO-IoT-ACMsVO: the simple use case

of sensing the speed of one car with two sensors and the use case of sensing the speed of multiple

cars with multiple sensors. By implementing these two scenarios using ACO-IoT-ACMsVO, we

determined how to configure the policies and control virtual object communication of our proposed
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model. The time to propagate information about suspicious cars and over-limit cars through all vir-

tual objects is measured and discussed. Finally, upon our study and implementation, we offered a

discussion of AWS IoT issues and suggestions of enhancing VOs communication and their access

control.

6.2 Future Work

Our use cases within ACO reveals different possibilities of communications among entities in each

layer and in different layers. As a result of these communications, the collected data flows among

entities in various layers. From our ACO architecture and user cases, we recognized two major

issues that need to be controlled: communications among entities, and data that flows through

these communications. Figure 3.5 in Chapter 3 represents the general two main recognized issues

and entities in each of them.

6.2.1 Controlling Communications

Access control models have been frequently used to control data access. On the other hand, en-

forcing access controls to determine what kind of communication or traffic is allowed onto the

network has been less frequently discussed by researchers although widely used in practice in fire-

walls [55]. A firewalls is a decision and enforcement point that grants or rejects any communication

flow through it.

In general, communications between entities at different layers are possible in different direc-

tions. In our ACO architecture, objects can communicate directly with each other at object layer.

Many protocols have been proposed for networked devices communications, such as Bluetooth

and WiFi [27, 48]. In addition, objects can communicate with their virtual objects with different

associations. These kinds of communications introduce questions such as, which objects are autho-

rized to communicate with a specific object? Which objects are allowed to access specific virtual

objects? What are the necessary requirements for objects to authorize them to communicate? Is

the collected data from objects going to participate in controlling the communication of an object?
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All these questions can be studied and solved by proposing access control models for all kinds of

objects’ communications.

Our ACO architecture integrates the cloud as a service management layer, which helps in solv-

ing issues with IoT technology. It exists in the middle between the top and the bottom of the ACO

architecture, so it is a crucial communication point that top and bottom entities should both access

to communicate with each other. How do virtual objects get permissions to access each other or

to access the cloud? Are virtual objects permitted to communicate directly with cloud entities or

not? And what are the conditions and requirements for this communication? Do clouds commu-

nicate to share their information with each other? Can virtual objects be controlled or accessed

through different (remote) clouds? Such questions should be addressed and appropriate access

control provided.

ACO architecture allows users and administrators to remotely connect with IoT entities across

applications in the application layer that generally display analyzed collected data. Also, applica-

tions can be used to control objects by sending commands that go from applications to cloud and

virtual objects layers to control objects. Based on our ACO architecture, such communications

between clouds, between virtual objects and clouds, and between applications and clouds can oc-

cur directly; communications between applications and objects, for example, should be transmitted

through clouds and virtual objects. Figure 3.5 shows general entities that can communicate directly

or through other layers and need to be controlled.

Within the IoT, indirect communication could introduce vulnerabilities in term of using an

authorized communication to get unauthorized communication. For example, an application is

allowed to communicate with a virtual object that has many-to-one association (many objects to

one virtual objects). In contrast, the application is not allowed to communicate with some of

the associated objects. Thus, such this association could cause indirect authorized access. It is

important to have access control models to be used to control entities communication.
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6.2.2 Controlling Access to Data

The ACO architecture integrates heterogeneous objects that collect data from an environment.

Data could be collected by an individual object, such as the multi-value switch from our simple

use case or a wearable FitBit device for one person. There could also be sub-data related to entities

of the IoT, such as information about objects, virtual objects, and application. All sub-data and

individual collected data can be accumulated and shared with others. Since our ACO architecture

integrates the cloud, accumulated data is saved in cloud. Figure 3.5 shows that data is a result of

communication, and also communication could be established to retrieve data. Thus, the relation

between data and communication is bidirectional. It also shows that individual collected data and

by object(s) and the sub-data are a subset of all accumulated data. Differentiating between who is

allow to access the individual collected, sub-data, or accumulated data is necessary.

Data security should be applied at every stage of the data lifecycle because it is vulnerable from

the moment of transferring it from the owner’s data storage until it is deleted from cloud storage.

According to [16], the data lifecycle is divided into seven stages: data generation, transfer, use,

share, storage, archival, and destruction.

In every stage of data lifecycle, the confidentiality and integrity of this data is important. There

are many questions raised regarding data security and privacy. Can an object, a virtual object, or

an application access data partially or entirely? If so, can they retrieve data directly or across other

entities? Can accumulated data in one cloud accessed by remote clouds, objects, applications, etc.?

What is accumulated data used for? These and similar questions present themselves when dealing

these issues.

6.2.3 General Issues

The virtual object layer includes virtual objects for physical objects. However, it is important to

address issues such as whether virtual objects exist first or physical objects? Should both virtual

objects and physical objects exist together or one of them could exist first? Can a virtual object

appear without being a counterpart for any physical objects? These questions need be to be con-
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sidered and addressed by studying and controlling the mapping between virtual objects and their

physical objects.

The owner or the administrator of entities creates an access control rule to govern the set of

allowable capabilities. For example, all virtual objects of wearable FitBit devices can view the

average of the collected data from all wearable FitBit devices. Since the number of devices and

applications in the IoT organization is unlimited, it is important for owners or administrators to

apply access control policy without prior knowledge of particular entities that might require ac-

cess [34]. ABAC allow an owner to implement access control policy without changing policy

when new entities join.

Administrators control entities through applications that exist in the application layer. Since ad-

ministrator and users both access through applications, it is important to distinguish administrators

from users. How administrators control communications between entities at same and different

layers? What kinds of actions that are self-control? What kinds of actions need direct control from

administrators? All these questions need to be considered.
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